Promoters play a key role in influencing transcriptional regulation for fine-tuning expression of genes. Heterologous promoter engineering has been a widely used concept to control the level of transcription in all model organisms. The strength of a promoter is mainly determined by its nucleotide composition. Many promoter libraries have been curated but few have attempted to develop theoretical methods to predict the strength of promoters from its nucleotide sequence.Such theoretical methods are not only valuable in the design of promoters with specified strength, but are also meaningful to understand the mechanism of promoters in gene transcription. In this study, we present a theoretical model to describe the relationship between promoter strength and nucleotide sequence in Saccharomyces cerevisiae. We infer from our analysis that the −49 to 10 sequence with respect to the Transcription Start Site represents the minimal region that can be used to predict the promoter strength. We present an online tool https://qpromoters.com/ that takes advantage of this fact to quickly quantify the strength of the promoters.
Promoters play a key role in influencing transcriptional regulation for fine-tuning the expression of genes. Heterologous promoter engineering has been a widely used concept to control the level of transcription in all model organisms. The strength of a promoter is mainly determined by its nucleotide composition. Many promoter libraries have been curated, but few have attempted to develop theoretical methods to predict the strength of promoters from their nucleotide sequence. Such theoretical methods are not only valuable in the design of promoters with specified strength but are also meaningful in understanding the mechanistic role of promoters in transcriptional regulation. In this study, we present a theoretical model to describe the relationship between promoter strength and nucleotide sequence in Saccharomyces cerevisiae . We infer from our analysis that the −49–10 sequence with respect to the Transcription Start Site represents the minimal region that can be used to predict promoter strength. https://qpromoters.com/ and a standalone tool https://github.com/DevangLiya/QPromoters to quickly quantify the strength of Saccharomyces cerevisiae promoters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.