Background: The rapid diagnostics of pathogens is essential to prescribe appropriate and early antibiotic therapy. The current methods for pathogen detection require the bacteria to grow in a culture medium, which is time-consuming. This increases the mortality rate and the global burden of antimicrobial resistance. Culture-free detection methods are still under development and are not used in the clinical routine. Therefore decreasing the culture time for accurate detection of infection and resistance is vital for diagnosis. Methods: In this study, we wanted to investigate easy-to-implement factors (in a minimal laboratory set-up), including inoculum size, incubation temperature, and additional supplementation (e.g., vitamin B12 and trace metals), that can significantly reduce the lag time (tlag). These factors were arranged in simple two-level factorial designs using Gram-positive (Escherichia coli and Pseudomonas aeruginosa) and Gram-negative (Staphylococcus aureus and Bacillus subtilis) bacteria, including clinical isolates with known antimicrobial resistance profiles. Blood samples spiked with a clinical isolate of E. coli CCUG17620 were also tested to see the effect of elevated incubation temperature on bacterial growth in blood cultures. Results: We observed that increased incubation temperature (42°C) along with vitamin B12 supplementation significantly reduced the tlag (10 – 115 minutes or 4% - 49%) in pure clinical isolates and blood samples spiked with E. coli CCUG17620. In the case of the blood sample, PCR results also detected bacterial DNA after only 3h of incubation and at three times the CFU/mL. Conclusions: Enrichment of bacterial culture media with growth supplements such as vitamin B12 and increased incubation temperature can be a cheap and rapid method for the early detection of pathogens. This is a proof-of-concept study restricted to a few bacterial strains and growth conditions. In the future, the effect of other growth conditions and difficult-to-culture bacteria should be explored to shorten the lag phase.
Background: Rapid diagnostics of pathogens is essential to prescribe appropriate antibiotic therapy. The current methods for pathogen detection require the bacteria to grow in a culture medium, which is time-consuming. This increases the mortality rate and global burden of antimicrobial resistance. Culture-free detection methods are still under development and are not common in the clinical routine. Therefore, decreasing the culture time for accurately detecting infection and resistance is vital for diagnosis. Methods: This study investigated easy-to-implement factors (in a minimal laboratory set-up), including inoculum size, incubation temperature, and additional supplementation (e.g., vitamin B12 and trace metals), that can significantly reduce the bacterial lag time (tlag). These factors were arranged in simple two-level factorial designs using Gram-positive cocci (Staphylococcus aureus), Gram-positive bacilli (Bacillus subtilis), and Gram-negative bacilli (Escherichia coli and Pseudomonas aeruginosa) bacteria, including clinical isolates with known antimicrobial resistance profiles. Blood samples spiked with a clinical isolate of E. coli CCUG 17620 (Culture Collection University of Gothenburg) were also tested to see the effect of elevated incubation temperature on bacterial growth in blood cultures. Results: We observed that increased incubation temperature (42°C) along with vitamin B12 supplementation significantly reduced the tlag (10 – 115 minutes or 4% - 49%) in pure clinical isolates and blood samples spiked with E. coli CCUG17620. In the case of the blood sample, PCR results also detected bacterial DNA after only 3h of incubation and at three times the CFU/mL. Conclusion: Enrichment of bacterial culture media with growth supplements such as vitamin B12 and increased incubation temperature can be a cheap and rapid method for the early detection of pathogens. This proof-of-concept study is restricted to a few bacterial strains and growth conditions. In the future, the effect of other growth conditions and difficult-to-culture bacteria should be explored to shorten the lag phase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.