[1] The first regional synthesis of long-term (back to~25 years at some stations) primary data (from direct measurement) on aerosol optical depth from the ARFINET (network of aerosol observatories established under the Aerosol Radiative Forcing over India (ARFI) project of Indian Space Research Organization over Indian subcontinent) have revealed a statistically significant increasing trend with a significant seasonal variability. Examining the current values of turbidity coefficients with those reported~50 years ago reveals the phenomenal nature of the increase in aerosol loading. Seasonally, the rate of increase is consistently high during the dry months (December to March) over the entire region whereas the trends are rather inconsistent and weak during the premonsoon (April to May) and summer monsoon period (June to September). The trends in the spectral variation of aerosol optical depth (AOD) reveal the significance of anthropogenic activities on the increasing trend in AOD. Examining these with climate variables such as seasonal and regional rainfall, it is seen that the dry season depicts a decreasing trend in the total number of rainy days over the Indian region. The insignificant trend in AOD observed over the Indo-Gangetic Plain, a regional hot spot of aerosols, during the premonsoon and summer monsoon season is mainly attributed to the competing effects of dust transport and wet removal of aerosols by the monsoon rain. Contributions of different aerosol chemical species to the total dust, simulated using Goddard Chemistry Aerosol Radiation and Transport model over the ARFINET stations, showed an increasing trend for all the anthropogenic components and a decreasing trend for dust, consistent with the inference deduced from trend in Angstrom exponent.
[1] The first ever, year-round measurements of aerosol black carbon (BC) over the western part of trans-Himalayas are reported from Hanle ($4520 m above mean sea level). The daily mean BC concentrations varied from as low as 7 ng m À3 to as high as 296 ng m À3 with an annual average of 77 AE 64 ng m
À3, indicating significant BC burden even at freetropospheric altitudes. Variation with in the day as well as from day to day were highly subdued during winter season (December to February) while they used to be the highest in Spring (March to May). In general, the less frequently occurring high BC values contributed more to the annual and seasonal means, while 64% of the values were below the annual mean. Seasonally, highest BC concentration (109 AE 78 ng m
[1] Six years of spectral aerosol optical depths (AODs), from the northeastern part of India (Dibrugarh), are used to evolve a climatology for this region. The results indicate that the seasonal mean AODs at 500 nm go as high as 0.45 ± 0.05 during premonsoon season (March to May), decrease gradually through the monsoon (June to September) to reach the lowest value of 0.19 ± 0.06 during the retreating-monsoon season (October and November), and increase to 0.31 ± 0.04 in winter (December to February). The AOD spectra are generally flatter than those seen typically over continental sites of India (and elsewhere in the neighboring regions) with Å ngström exponent a remaining below 1.0 during February through August, indicating a relatively low abundance of fine and accumulation mode aerosols. The columnar size distributions (CSD) retrieved from spectral AODs are, in general, bimodal with primary mode at $ 0.1 mm and secondary mode at $ 1.0 mm. High mass loading ($309.5 ± 65.9 mg m À2 ) and effective radius ($0.40 ± 0.09 mm) occur during premonsoon and are attributed to significant abundance of coarse (natural) aerosols. Cluster analysis of air mass back trajectories indicate significant transport of mineral dust from the arid regions of west Asia and northwest India across the Indo-Gangetic plains and marine aerosols advected from the Bay of Bengal contributing largely to the coarse mode aerosols during this season. On the other hand, the peculiar topography combined with the local conditions and the widespread rainfall lead to a more pristine environment during retreating-monsoon season with quite low AODs and columnar loading.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.