Ethiopia, the second most populated country in Africa, meets 96% of its energy need from bio-mass and majority of this energy goes entirely to Injera baking. Injera, a pan-cake like bread that is consumed by most of the population, demands a temperature of 180-220 o C to be well baked. Both traditional and newly developed biomass Injera stoves are energy inefficient; besides the kitchen environment is highly polluted with soot and smoke that affect the health of household inhabitants. This article introduces new technology that enables Injera baking using indirect solar stove. A parabolic dish with an aperture area of 2.54 m 2 , a well-insulated stainless steel pipe of 10mm, a coiled stainless steel heat exchanger, a pressure relief valve and three gate valves were equipped in the system and K-type thermocouples were used to record the temperature. The heat transfer process has been governed by the principle of natural circulation boiling-condensation between receiver and stove. A preset pressure relief valve is used to control the self-circulating working heat transfer fluid (steam at a temperature of 250 o C). The system was developed and tested for steam based direct baking in the same fashion as the traditional Injera stove. In this experiment, heat transport without significant loss from the receiver for baking at some distance is demonstrated. The challenge with manual tracking and direct steam based baking model indicates the performance of the technology can be improved. It can also win more acceptances if it is equipped with auto trackers and heat storage mechanism. In conclusion, unlike previous efforts, the experiment demonstrated that a high temperature indirect baking of Injera is possible.
A substantial share of the total energy in various countries is consumed by industries and manufacturing sectors. Most of the energy is used for low and medium temperature process heating (up to 3000C) as well as low and medium cooling capacity (up to 350kW). To meet the demand, the industrial sector consumes most of its energy in either thermal (heat) or electrical energy forms. The use of fossil fuels accounts for about half of the overall share. This resulted in a necessity to commercialize local and clean renewable energy sources efficiently considering the reduction of economic dependence on fossil fuels and greenhouse gases emission. As such, solar energy has proven potential and resulted in considerable development and deployment of solar heating industrial processes (SHIP) and solar cooling systems in recent times. Thus, an attempt to present a review of the available literature on overall energy intensiveness, process temperature levels, solar technology match, and solar thermal system performance and cost have been made in this paper. The review also includes identifying the potential and relevance of involving solar thermal for industrial heating and cooling demand. As a result, at least 624 SHIP including promising large-scale plants and 1350 solar cooling systems most of them in small and medium capacities in operation are identified. Though limited data is available for solar cooling potential and installation, investigations projected the global SHIP potential to 5.6 EJ for 2050. Consequently, given the presence of many low and medium temperature heating processes and cooling capacities in industries with immense solar energy potential, developing counties such as Ethiopia can take experience and pay attention to the development of sustainable industrial systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.