This paper gives the concept of spatial econometric model and applies it to analyze the spatial dimensions of poverty and its determinants using data from Java Island 2010 census survey, for 105 districts of Java Island. Dependent variable used in this research is percentage of poverty rate at particular district and predictors are some selected variables that are correlated to poverty. Weighted matrix is obtained by using queen contiguity criteria and four statistical models are applied to the data, Ordinary Least Square regression model, Spatial Error Model, Spatial Lag Model and Spatial Durbin Model. It is shown that the OLS estimates of the poverty function suffer from spatial effects that indicated the OLS model are miss specified since Moran Index test also confirmed the existence of spatial autocorrelation. LM and Robust LM are used for testing the existence of spatial effect. The Likelihood Ratio common factor test and AIC are used for model selection criteria. Gauss Markov Assumptions are done and the Spatial Lag model proved to be better than other model for a given data and the result shows that Education and Working hours has significant impact on poverty.
Among many indicators of climate change, the temperature is a key indicator to take remedial action for world global warming. This finding provides application of space-time models for temperature data, which is selected in three meteorology stations (Mekelle, Adigrat and Adwa) of Northern Ethiopia. The objectives of this research are to see the space-time variations of temperature and to find better forecasting model. The steps for building this model starting from order selection of space and autoregressive order, parameters estimation, a diagnostic check of errors and finally forecasting for the long term. The preliminary model is identified by VAR (vector autoregressive) model and tentatively selects the order by using MIC (minimum information criteria) and uses the autoregressive order for the model and fixes the spatial effect, model parameters are estimated using the least square method. Weighted matrix computed by using queen contiguity criteria. It is found that the model STAR(1,1) and GSTAR(1,1) are two options, finally the best-fitted model is GSTAR(1,1) which has high forecasting performance and smallest RMSEF. The outcome of the forecast indicated that in northern Ethiopia, the weather conditions especially temperature of future is increasing trend in dry seasons in all 3 stations in similar fashion but more consistent and has less variation across the region, and less consistent and high variation within the region and the researcher found that spatial effect has high impact on prediction of models.
Article HistoryThis study focuses in determining the trend and seasonality export performance of stem rose flower at Hawassa Green Wood based on five year monthly data. The data was obtained from secondary and primary source and includes from January 2006/7 to December 2010/11. Both descriptive and inferential Statistical methods of analysis are used to analyses the data. The analysis is done by using Minitab statistical soft ware. The methods of interests are trend analysis and Box-Jenkins SARIMA models. The trend for this data shows an increasing trend however seasonal fluctuation occurs. SARIMA (0, 1, 2) (0, 1, 1) are the selected Box-Jenkins potential model for this data and by using this model forecasted two years ahead.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.