Applying hydrological models for river basin management depends on the availability of the relevant data information to constrain the model residuals. The estimation of reliable parameter values for parameterized models is not guaranteed. Identification of influential model parameters controlling the model response variations either by main or interaction effects is therefore critical for minimizing model parametric dimensions and limiting prediction uncertainty, in this study, the Sobol variancebased sensitivity analysis method was applied to quantify the importance of the HBV conceptual hydrological model parameterization. The analysis was also supplemented by the generalized sensitivity analysis method to assess relative model parameter sensitivities in cases of negative Sobol sensitivity index computations. The study was applied to simulate runoff responses at twelve catchments varying in size. The result showed that varying up to a minimum of four to six influential model parameters for high flow conditions, and up to a minimum of six influential model parameters for low flow conditions can sufficiently capture the catchments' responses characteristics. To the contrary, varying more than nine out of 15 model parameters will not make substantial model performance changes on any of the case studies.
Editor D. KoutsoyiannisCitation Zelelew, M.B., and Alfredsen, K., 2014. Transferability of hydrological model parameter spaces in the estimation of runoff in ungauged catchments. Hydrological Sciences Journal, 59 (8), 1470-1490. http://dx.doi.org/10.1080/02626667.2013.838003 Abstract In this study, transferability options of the Hydrologiska Byråns Vattenbalansavdelning (HBV) hydrological model parameter (MP) spaces were investigated to estimate ungauged catchment runoff. Three approaches were applied in the study: MP space transfer from single, neighbouring and all potential donor catchments. The model performance was evaluated by a jackknife procedure, where one catchment at a time was treated as if ungauged, and behavioural MP sets from candidate donor catchments were used to estimate the "ungauged" runoff. The results showed that ungauged catchment runoff estimation could not be guaranteed by transferring MP sets from a single physiographically nearest donor catchment. Integrating MP sets typically from one to six donor catchments supplemented the lack of effective MP sets and improved the model performance at the ungauged catchments. In addition, the analysis results revealed that the model performance converged to an average performance when the MP sets of all potential donor catchments were integrated. Key words behavioural model parameter set; donor catchment; HBV hydrological model; model performance convergence; ungauged catchment Transférabilité des espaces des paramètres d'un modèle hydrologique pour estimer le débit sur des bassins versants non jaugés Résumé Dans cette étude, nous avons étudié des options de transférabilité des espaces de paramètres du modèle hydrologique HBV pour estimer le débit de bassins versants non jaugés. Trois solutions différentes ont été appliquées dans l'étude: des approches de transfert de l'espace des paramètres issu d'un unique bassin donneur, de bassins voisins et de tous les bassins donneurs potentiels. La performance du modèle a été évaluée par une procédure jack-knife, où chaque bassin versant a été traité successivement comme s'il était non jaugé, et où des jeux de paramètres appropriés du modèle, issus de bassins donneurs candidats ont été utilisés pour estimer le débit « non jaugé ». Les résultats ont montré que l'estimation du débit sur bassin non jaugé ne pouvait être garantie par le transfert de jeux de paramètres du modèle à partir d'un seul bassin versant donneur physiographiquement le plus proche. Intégrer des jeux de paramètres du modèle issus typiquement de un à six bassins donneurs a permis de pallier le manque de jeux de paramètres efficaces du modèle et d'améliorer la performance du modèle sur les bassins versants non jaugés. En outre, les résultats des analyses ont révélé que la performance du modèle converge vers une performance moyenne lorsque tous les jeux de paramètres du modèle issus de donneurs potentiels sont intégrés.Mots clefs jeux de paramètres appropriés du modèle ; bassin versant donneur ; modèle hydrologique HBV ; convergence des perf...
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.