ASS ANTIMICROBIAL ADministrations have been used in several control programs and have been contemplated for many others. They have proven to be effective against some parasitic diseases (eg, onchocerciasis and filariasis), but at times have not lived up to expectations (eg, malaria). 1-3 Various forms of mass treatment have been used for bacterial diseases, including sexually transmitted chlamydia and syphilis. 4,5 The World Health Organization (WHO) 6 and its partners are now using repeated mass azithromycin administrations to control the ocular strains of chlamydia that cause trachoma, the world's leading cause of infectious blindness. 7 Trachoma meets the critical criteria for eradicability: there is an effective treatment for the ocular strains of Chlamydia trachomatis, and there is no known animal reservoir. Cur
BackgroundWorldwide, there were 650,000 multidrug-resistant tuberculosis (MDR-TB) cases in 2010, and in 2008 the World Health Organization estimated that 150,000 deaths occurred annually due to MDR-TB. Ethiopia is 15th among the 27 MDR-TB high-burden countries. This study identifies factors associated with the occurrence of MDR-TB in patients who underwent first-line TB treatment in Addis Ababa City.MethodsA case control study was conducted at St. Peter Hospital and five health centers in Addis Ababa from 1 November 2011 to February 30, 2012. Cases were MDR-TB patients who were confirmed with culture and drug-susceptibility testing and were in treatment at St. Peter Hospital during the study period. Controls were patients who were on first-line anti-TB treatment and were registered as cured or having completed treatment in the period 9 April 2009– 28 February 2010, in five health centers of Addis Ababa City. Accordingly, 134 cases and an equal number of controls were included in this study. A structured interview questionnaire was used to assess factors that could potentially be associated with the occurrence of MDR-TB.ResultsFactors that were significantly associated with MDR-TB: drug side effects during first-line treatment (adjusted odds ratio (AOR): 4.5, 95% CI; 1.9 - 10.5); treatment not directly observed by a health worker (AOR = 11.7, 95% CI; 4–34.3); interruption of treatment of at least a day (AOR = 13.1, 95% CI 3.0-56.6); duration of treatment between 2 and 7 months (AOR = 14.8, 95% CI 2.3-96.4); and retreatment with the Category II regimen (P = 0.000). In the current study, HIV infection was not significantly associated with the occurrence of MDR-TB.ConclusionsPatients who were not in strict DOTS programs and did not adhere to first-line TB treatment and patients who experienced side effects during first-line treatment and Category II retreatment were at significantly increased risk of developing MDR-TB. The DOTS program should, therefore, be strengthened to increase patient adherence. Drug-susceptibility testing is also highly recommended for all Category I treatment regimen failures before those patients begin the Category II regimen.
BackgroundTuberculosis (TB) is the leading cause of mortality in high HIV-prevalence populations. HIV is driving the TB epidemic in many countries, especially those in sub-Saharan Africa. The aim of this study was to assess predictors of mortality among TB-HIV co-infected patients being treated for TB in Northwest Ethiopia.MethodsAn institution-based retrospective cohort study was conducted between April, 2009 and January, 2012. Based on TB, antiretroviral therapy (ART), and pre-ART registration records, TB-HIV co-infected patients were categorized into “On ART” and “Non-ART” cohorts. A Chi-square test and a T-test were used to compare categorical and continuous variables between the two groups, respectively. A Kaplan-Meier test was used to estimate the probability of death after TB diagnosis. A log-rank test was used to compare overall mortality between the two groups. A Cox proportional hazard model was used to determine factors associated with death after TB diagnosis.ResultsA total of 422 TB-HIV co-infected patients (i.e., 272 On ART and 150 Non-ART patients) were included for a median of 197 days. The inter-quartile range (IQR) for On ART patients was 140 to 221 days and the IQR for Non-ART patients was 65.5 to 209.5 days. In the Non-ART cohort, more TB-HIV co-infected patients died during TB treatment: 44 (29.3%) Non-ART patients died, as compared to 49 (18%) On ART patients died. Independent predictors of mortality during TB treatment included: receiving ART (Adjusted Hazard Ratio (AHR) =0.35 [0.19-0.64]); not having initiated cotrimoxazole prophylactic therapy (CPT) (AHR = 3.03 [1.58-5.79]); being ambulatory (AHR = 2.10 [1.22-3.62]); CD4 counts category being 0-75cells/micro liter, 75-150cells/micro liter, or 150-250cells/micro liter (AHR = 4.83 [1.98-11.77], 3.57 [1.48-8.61], and 3.07 [1.33-7.07], respectively); and treatment in a hospital (AHR = 2.64 [1.51-4.62]).ConclusionsDespite the availability of free ART from health institutions in Northwest Ethiopia, mortality was high among TB-HIV co-infected patients, and strongly associated with the absence of ART during TB treatment. In addition cotrimoxazol prophylactic therapy remained important factor in reduction of mortality during TB treatment. The study also noted importance of early ART even at higher CD4 counts.
Ocular chlamydial infection was not eliminated in children aged 1 to 5 years after a single mass azithromycin distribution; it slowly returned over 24 months, although not to baseline levels. Repeated treatments or other effective measures will be necessary for elimination.
BackgroundAntibiotics are a major tool in the WHO's trachoma control program. Even a single mass distribution reduces the prevalence of the ocular chlamydia that causes trachoma. Unfortunately, infection returns after a single treatment, at least in severely affected areas. Here, we test whether additional scheduled treatments further reduce infection, and whether infection returns after distributions are discontinued.MethodsSixteen communities in Ethiopia were randomly selected. Ocular chlamydial infection in 1- to 5-year-old children was monitored over four biannual azithromycin distributions and for 24 months after the last treatment.FindingsThe average prevalence of infection in 1- to 5-year-old children was reduced from 63.5% pre-treatment to 11.5% six months after the first distribution (P<0.0001). It further decreased to 2.6% six months after the fourth and final treatment (P = 0.0004). In the next 18 months, infection returned to 25.2%, a significant increase from six months after the last treatment (P = 0.008), but still far lower than baseline (P<0.0001). Although the prevalence of infection in any particular village fluctuated, the mean prevalence of the 16 villages steadily decreased with each treatment and steadily returned after treatments were discontinued.ConclusionIn some of the most severely affected communities ever studied, we demonstrate that repeated mass oral azithromycin distributions progressively reduce ocular chlamydial infection in a community, as long as these distributions are given frequently enough and at a high enough coverage. However, infection returns into the communities after the last treatment. Sustainable changes or complete local elimination of infection will be necessary.Trial RegistrationClinicalTrials.gov NCT00221364
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.