The internet revolution in society has various effects on our daily life such as the use of social media. While social media is ubiquitous and great in some aspects, it brings a new issue that appears more and more in today’s world. This new issue, Cyberbullying, involves harming someone by posting or sharing content that causes feelings of embarrassment, guilt, or humiliation. Easily creating fake social media accounts with fake identity further increase cyberbullying incidents and encourages cyberbullies. Cyberbullying can affect people both mentally and physically and can lead to permanent problems. However, studies in this area show that cyberbullying can be prevented. In this study, we review machine learning techniques to detect and prevent cyberbullying, evaluate the performances of the machine and deep learning models, and examine factors that affect the performance of the models. We also discuss the importance of data preprocessing, feature extraction and selection, and classification processes in cyberbullying detection problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.