Background: The ROS1 gene is a member of the "sevenless" subfamily of tyrosine-kinase insulin-receptor genes. ROS1-fusion rearrangement causes constitutive downstream signal transduction, with an oncogenic role in non-small-cell lung carcinoma (NSCLC). Fortunately, crizotinib, an ALK1 tyrosine-kinase inhibitor, provides long-term disease control. The objective of this molecular epidemiological study was to estimate the frequency of ROS1 rearrangements and evaluate treatment outcomes with crizotinib therapy. Methods: Patients with stage IV NSCLC adenocarcinoma histology were considered for this study. The study was conducted according to the ethical principles stated in the latest version of the Declaration of Helsinki and the applicable guidelines for good clinical practice. Clinical characteristics and treatment details were collected from patients' medical records. Results: A total of 709 stage IV NSCLC adenocarcinoma patients were included in the study. There were 457 (64.46%) men and 252 (35.54%) women, with a median age of 60 years. ROS1-gene rearrangement was positive in 20 (2.82%) cases, 13 using Fluorescent In-Situ Hybridization (FISH), and two and five cases, respectively, using immunohistochemistry (IHC) and next-generation sequencing (NGS), followed by confirmation with FISH. Fourteen of the 20 patients with ROS1-gene rearrangement received crizotinib therapy, with an objective response rate of 64.28%. At a median follow-up of 6 months, the study had not achieved the end points of median progression free survival and overall survival. Conclusion: ROS1-gene rearrangement was present at a relatively higher frequency of 2.8% in north Indian patients with lung adenocarcinoma and was successfully targeted by crizotinib therapy. Although the only US Food and Drug Administration and Conformité Européenne approved method for testing ROS1 rearrangement is NGS, FISH alone or IHC with D4D6 antibody as initial screen with subsequent confirmation of IHC-positive cases by FISH are cost-effective methods in institutions lacking NGS facilities.
RT-PCR results were found to be suboptimal to IHC in terms of discriminative ability and clinical benefit; thus, it is unlikely to replace IHC as a first-line test in the near future.
Background
Next-generation sequencing (NGS) based assay for finding an actionable driver in non-small-cell lung cancer is a less used modality in clinical practice. With a long list of actionable targets, limited tissue, arduous single-gene assays, the alternative of NGS for broad testing in one experiment looks attractive. We report here our experience with NGS for biomarker testing in hundred advanced lung cancer patients.
Methods
Predictive biomarker testing was performed using the Ion AmpliSeq™ Cancer Hotspot Panel V2 (30 tumors) and Oncomine™ Solid Tumor DNA and Oncomine™ Solid Tumor Fusion Transcript kit (70 tumors) on Ion-Torrent sequencing platform.
Results
One-seventeen distinct aberrations were detected across 29 genes in eighty-six tumors. The most commonly mutated genes were TP53 (43% cases), EGFR (23% cases) and KRAS (17% cases). Thirty-four patients presented an actionable genetic variant for which targeted therapy is presently available, and fifty-two cases harbored non-actionable variants with the possibility of recruitment in clinical trials. NGS results were validated by individual tests for detecting EGFR mutation, ALK1 rearrangement, ROS1 fusion, and c-MET amplification. Compared to single test, NGS exhibited good agreement for detecting EGFR mutations and ALK1 fusion (sensitivity- 88.89%, specificity- 100%, Kappa-score 0.92 and sensitivity- 80%, specificity- 100%, Kappa-score 0.88; respectively). Further, the response of patients harboring tyrosine kinase inhibitor (TKI) sensitizing EGFR mutations was assessed. The progression-free-survival of EGFR positive patients on TKI therapy, harboring a concomitant mutation in PIK3CA-mTOR and/or RAS-RAF-MAPK pathway gene and/or TP53 gene was inferior to those with sole-sensitizing EGFR mutation (2 months vs. 9.5 months, P = 0.015).
Conclusions
This is the first study from South Asia looking into the analytical validity of NGS and describing the mutational landscape of lung cancer patients to study the impact of co-mutations on cancer biology and treatment outcome. Our study demonstrates the clinical utility of NGS testing for identifying actionable variants and making treatment decisions in advanced lung cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.