The point of zero charge pH of an oxide surface is a fundamental surface chemistry property or solids or metal oxides that determine the nature of interaction at the solid-aqueous solution interface. In colloid chemistry this physical parameter controls the evolution of the electric double layer as well as adsorption and desorption processes.In colloid chemistry a number of methods have been used for the determination of the point of zero charge pH of an oxide surface. This ranges from titrimetric to radiation chemistry approach that deals with scanning electron microscopy.In this study, the direct effect of aqueous solution acidity on the solid-liquid interfacial free energy and the consequence of this effect on spontaneous imbibition of aqueous solution into borosilicate glass have been exploited for the determination of the point of zero charge pH of this type of glass. What is new in this method is that while the traditional titration method relies on neutralization of surface charges, the present method relies on interfacial free energy changes due to aqueous solution pH changes and the effect of this on the wettability of borosilcate glass surface. Result of point of zero charge pH obtained from the present method has been compared with those obtained using traditional methods. The comparison shows close agreements and this proves the technique used in the present work as a novel method for the determination of the point of zero charge pH of oxide surfaces.
Diagenesis is one of the most important factors impacting the performance of many reservoirs and is perhaps the most important factor impacting the performance of tight sandstone reservoirs, such as those of the Sulige gas field in the Ordos Basin of China. However, the relationship between diagenesis and related parameters determining reservoir physical properties remains unclear. Therefore, we have analyzed experimental data from high-pressure mercury intrusion porosimetry, scanning electron microscopy, and thin sections in addition to using a porosity recovery calculation model to investigate microscopic characteristics, diagenesis, and pore-evolution processes of the low-permeability tight gas reservoir of the He-8 unit of the Sulige gas field in the Ordos Basin. In addition, we have identified the impacts of diagenesis on reservoir characteristics and established the relationship between diagenesis and reservoir quality evolution. We also used the Beard primary porosity model to recover the primary porosity, and to built the reducing and enhancing calculation models for intergranular pore, dissolution pore, and intercrystalline pore during diagenesis. Based on the quantitative relationship between diagenesis processes and porosity evolution, we found that the results of simulation calculation and experimental works were in close agreement with minimal error.
For decades now, low salinity water flooding (LSWF) oil recovery has emerged as an environmentally benign and cost-effective method for improved oil recovery, where research findings have reported pH and interfacial tension effects. Considering the effect of oil chemistry on interfacial tension and the potential of this chemistry to have a direct relationship with LSWF, we measured the interfacial tension of four crude oils with composition varying from those of conventional to unconventional ones. We also characterized the crude oil samples using infrared spectroscopy and a wet chemistry method based on asphaltene precipitation. Our research approach has enabled us to relate the composition of crude oil to the interfacial tension trend at pH encountered in improved oil recovery schemes. Our research methodology, based on an integrated approach to using infrared spectroscopy and interfacial tensiometry, has also enabled us to propose a more robust theoretical explanation for current observations in LSWF related to pH and interfacial tension. In this regard, oil−water interfacial tension depends on the concentration of polar components, such that the higher the concentration of polar groups in crude oil, the higher the interfacial tension at a given pH of aqueous solution. We have also shown that the acid-base behavior of polar groups at the oil−water interface provides a theoretical interpretation of the explicit relationship between oil−water interfacial tension and the electrostatic components of interfacial tension as given by the energy additivity theory.
Wallace sandstone has been extensively used by the construction industry for a long time in Nova Scotia. Apart from oxide analysis and a few strength-related parameter data found on some websites, petrophysical data regarding pore-sized distribution and fractal dimension are lacking. In the petroleum engineering literature, the spontaneous imbibition dynamics mechanism has been modeled where imbibition time has been linked to imbibition rise. One of the models links imbibition time to imbibition rise through a group of parameters that integrate the fractal dimension and sediment tortuosity. Based on the assumption of a bundle of parallel capillary tubes model found in the petrophysical literature, we have used the spontaneous imbibition model to derive an equation that links fractal dimension to porosity and permeability. Using literature source data on Wallace sandstone core samples, we have calculated the fractal dimension and pore size distribution using our equation. Results show that this sandstone has a significant level of heterogeneity. Calculation using another literature source data shows that our equation calculates fractal dimensions that are closer to those reported for the capillary pressure method. Although the assumption of bundle of parallel capillary tubes leads to deviations in calculated fractal dimensions using literature source data with experimentally determined porosity, permeability and fractal dimensions, our equation calculates meaningful values of fractal dimensions. Graphical abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.