A synthetic jet actuator is a fluidic device that produces a jet flow by the periodic ingestion of fluid into and expulsion of fluid out of a cavity across an orifice. Since such a mechanism transfers linear momentum to the fluid without introducing a net mass into the system over an actuation cycle, the synthesised jet is also termed a zero-net-mass-flux jet. Over the last two decades, synthetic jets have been the subject of intense research. It has been shown that the geometric parameters of a synthetic jet actuator can strongly influence the flow characteristics and performance of synthetic jets. The aim of this paper is to provide a comprehensive review of the influence of the geometric parameters of a synthetic jet actuator on the characteristics
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.