(1) Background: Icariin is the main component of the Chinese herb Epimedium. A number of studies have shown that it alleviates abnormal lipid metabolism. However, it is not clear whether and how icariin can ameliorate hepatic steatosis with polycystic ovary syndrome (PCOS). This study was designed to explore the anti-hepatosteatosis effect of icariin in rats with polycystic ovary syndrome. (2) Methods: Female Sprague Dawley(SD)rats were treated with a high-fat diet and letrozole for 21 days to make nonalcoholic fatty liver disease (NAFLD) in the polycystic ovary syndrome model. Then model rats were treated with icariin (by gavage, once daily) for 28 days. Serum hormones and biochemical variables were determined by ELISA or enzyme. RNA-sequence analysis was used to enrich related target pathways. Then, quantitative Real-time PCR (qRT-PCR) and Western blot were performed to verify target genes and proteins. (3) Results: Icariin treatment reduced excess serum levels of Testosterone (T), Estradiol (E2), Luteinizing hormone (LH), Follicle-stimulating hormone (FSH), LH/FSH ratio, insulin, triglycerides (TG), and aspartate aminotransferase (AST) in high-fat diet (HFD) and letrozole fed rats. Meanwhile, icariin ameliorated HFD and letrozole-induced fatty liver, as evidenced by a reduction in excess triglyceride accumulation, vacuolization, and Oil Red O staining area in the liver of model rats. Results of RNA-sequencing, western blotting, and qRT-PCR analyses indicated that icariin up-regulated fatty acid translocase (CD36), in mitochondria, and peroxisome proliferator-activated receptor α (PPARα) expression, which led to the enhancement of fatty acid oxidation molecules, such as cytochrome P450, family 4, subfamily a, polypeptide 3 (CYP4A3), carnitine palmitoyltransferase 1 α (CPT1α), acyl-CoA oxidase 1 (ACOX1), medium-chain acyl-CoA dehydrogenase (MCAD), and long-chain acyl-CoA dehydrogenase (LCAD). Besides, icariin reduced lipid synthesis, which elicited stearoyl-Coenzyme A desaturase 1 (SCD1), fatty acid synthase (FASN), and acetyl-CoA (ACC). (4) Conclusion: Icariin showed an ameliorative effect on hepatic steatosis induced by HFD and letrozole, which was associated with improved fatty acid oxidation and reduced lipid accumulation in the liver.
Overview: The treatment of chronic renal failure (CRF) with traditional Chinese medicine has attracted much attention, but its mechanism is not clear. Network pharmacology is an effective strategy for exploring the interaction mechanisms between Chinese herbs and diseases, however, it still needs to be validated in cell and/or animal experiments due to its virtual screening characteristics. Herein, the anti-CRF mechanism of the Fushengong decoction (FSGD) was investigated using a dual-dimension network pharmacological strategy combined with in vivo experiment.Methods: The traditional Chinese medicine systems pharmacology (TCMSP) database (https://tcmspw.com) and UHPLC-MS/MS technology were used to identify the effective compounds of FSGD in theory and practice, such as quercetin, formononetin, and pachymic acid. The putative targets of FSGD and CRF were obtained from the Swisstarget prediction platform and the Genecards database, respectively. The common target pathways between FSGD and CRF were got from the dual-dimension network pharmacology analysis, which integrated the cross-common targets from the TCMSP components-Swisstarget-Genecards-Venn platform analysis in theory, and the UHPLC-MS/MS identified effective ingredients-Swisstarget screening, such as TNF and PI3K/AKT. Furthermore, system molecular determinations were used to prove the dual-dimension network pharmacology study through CRF rat models, which were constructed using adenine and treated with FSGD for 4 weeks.Results: A total of 121 and 9 effective compounds were obtained from the TCMSP database and UHPLC-MS/MS, respectively. After dual-dimension network pharmacology analysis, the possible mechanism of PTEN/PI3K/AKT/NF-κB pathway was found for FSGD in CRF. In vivo experiments indicated that FSGD can play a role in protecting renal function and reducing fibrosis by regulating the PTEN/PI3K/AKT/NF-κB pathway. These findings provide a reference for FSGD in CRF.Conclusion: Based on the theoretical and practical dual-dimension network pharmacology analysis for FSGD in CRF, the possible molecular mechanism of PTEN/PI3K/AKT/NF-κB was successfully predicted, and these results were verified by in vivo experiments. In this study, the dual-dimension network pharmacology was used to interpret the key signal pathway for FSGD in CRF, which also proved to be a smart strategy for the study of effective substances and pharmacology in FSGD.
Immune infiltration remains at a high level in clear cell renal cell carcinoma (ccRCC). It has been confirmed that immune cell infiltration in tumor microenvironment (TME) is intimately bound up with the progression and the clinical outcome of ccRCC. The prognostic model, developed based on different immune subtypes of ccRCC, has a predictive value in patients’ prognosis. RNA sequencing data, somatic mutation data of ccRCC and clinical information were acquired from the cancer genome atlas (TCGA) database. The key immune-related genes (IRGs) were selected and by univariate Cox, LASSO, and multivariate Cox regression analyses. Then the ccRCC prognostic model was developed. The applicability of this model was verified in the independent dataset GSE29609. Thirteen IRGs including CCL7, ATP6V1C2, ATP2B3, ELAVL2, SLC22A8, DPP6, EREG, SERPINA7, PAGE2B, ADCYAP1, ZNF560, MUC20, and ANKRD30A were finally selected and a 13-IRGs prognostic model was developed. Survival analysis demonstrated that when compared with the low-risk group, patients in the high-risk group had a lower overall survival (p<0.05). AUC values based on the 13-IRGs prognostic model used to predict 3- and 5-year survival of ccRCC patients were greater than 0.70. And risk score was an independent prognostic factor (p<0.001). In addition, nomogram could accurately predict ccRCC patient’s prognosis. This 13-IRGs model can effectively evaluate the prognosis of ccRCC patients, and also provide guidance for the treatment and prognosis of ccRCC patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.