This paper investigates the use of the discrete wavelet transform (DWT) and Fast Fourier Transform (FFT) to improve the quality of extracted features for machine learning. The case study in this paper is detecting the health state of the ballscrew of a gantry type machine tool. For the implementation of the algorithm for feature extraction, wavelet is first applied to the data, followed by FFT and then useful features are extracted from the resultant signal. The extracted features were then used in various machine learning algorithms like decision tree, K-nearest neighbour (KNN) and support vector machine (SVM) for binary classification of the ballscrew state. The result shows significant improvement in the classification accuracy after the wavelet transform and FFT has been performed on the data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.