Abstract-Text summarization task is still an active area of research in natural language preprocessing. Several methods that have been proposed in the literature to solve this task have presented mixed success. However, such methods developed in a multi-document Arabic text summarization are based on extractive summary and none of them is oriented to abstractive summary. This is due to the challenges of Arabic language and lack of resources. In this paper, we present a minimal languagedependent processing abstractive Arabic multi-document summarizer. The proposed model is based on textual graph to remove multi-document redundancy and generate coherent summary. Firstly, the original text, highly redundant and related multidocument, will be converted into textual graph. Next, graph traversal with structural rules will be applied to concatenate related sentences to single ones. Finally, unwanted and less weighted phrases will be removed from the summarized sentences to generate final summary. Preliminary results show that the proposed method has achieved promising results for multidocument summarization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.