Background: In the neutron-rich A ≈ 100 mass region, rapid shape changes as a function of nucleon number as well as coexistence of prolate, oblate, and triaxial shapes are predicted by various theoretical models. Lifetime measurements of excited levels in the molybdenum isotopes allow the determination of transitional quadrupole moments, which in turn provides structural information regarding the predicted shape change. Purpose: The present paper reports on the experimental setup, the method that allowed one to measure the lifetimes of excited states in even-even molybdenum isotopes from mass A = 100 up to mass A = 108, and the results that were obtained.
Method:The isotopes of interest were populated by secondary knock-out reaction of neutron-rich nuclei separated and identified by the GSI fragment separator at relativistic beam energies and detected by the sensitive PreSPEC-AGATA experimental setup. The latter included the Lund-York-Cologne calorimeter for identification, tracking, and velocity measurement of ejectiles, and AGATA, an array of position sensitive segmented HPGe detectors, used to determine the interaction positions of the γ ray enabling a precise Doppler correction. The lifetimes were determined with a relativistic version of the Doppler-shift-attenuation method using the systematic shift of the energy after Doppler correction of a γ -ray transition with a known energy. This relativistic Doppler-shiftattenuation method allowed the determination of mean lifetimes from 2 to 250 ps. Results: Even-even molybdenum isotopes from mass A = 100 to A = 108 were studied. The decays of the low-lying states in the ground-state band were observed. In particular, two mean lifetimes were measured for the first time: τ = 29.7
Conclusions:The reduced transition strengths B(E2), calculated from lifetimes measured in this experiment, compared to beyond-mean-field calculations, indicate a gradual shape transition in the chain of molybdenum isotopes when going from A = 100 to A = 108 with a maximum reached at N = 64. The transition probabilities decrease for 108 Mo which may be related to its well-pronounced triaxial shape indicated by the calculations.
Isomeric states in 59,61 Ti have been populated in the projectile fragmentation of a 345 AMeV 238 U beam at the Radioactive Isotope Beam Factory. The decay lifetimes and delayed γ-ray transitions were measured with the EURICA array. Besides the known isomeric state in 59 Ti, two isomeric states in 61 Ti are observed for the first time. Based on the measured lifetimes, transition multipolarities as well as tentative spins and parities are assigned. Large-scale shell model calculations based on the modified LNPS interaction show that both 59 Ti and 61 Ti belong to the Island of Inversion at N = 40 with ground state configurations dominated by particle-hole excitations to the g 9/2 and d 5/2 orbits.
Pyrite FeS2 has become the focus of many researchers in thin-film photovoltaics because it has some possibilities in photovoltaics. In this manuscript, we present an experimental and a theoretical study of the electronic structure of pyrite FeS2 alloyed with a small concentration of 1.19% of ruthenium (Fe0.9881Ru0.0119S2) by using the Linear Muffin-Tin Orbital Method in the Atomic-Sphere approximation (LMTO-ASA) calculations and the density of states. We observed that the bandgap of FeS2 increases from 0.90508 to 1.21586 eV when we replace ~1.19% of the Fe atoms with ruthenium atoms x=0.0119 concentration of Ru. We prove that this low concentration of Ru saved the gap states and the electronic and optical properties of FeS2 pyrite. Our calculated electronic bandgap is 1.21586 eV and direct. Our results confirm that the symmetric operation of the space Th6 Pa3 saves electronic structure of iron pyrite when alloyed with ruthenium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.