The contagious SARS-CoV-2 virus responsible for COVID-19 disease has infected over 27 million people across the globe within a few months. While literature on SARS-CoV-2 indicates that its transmission may occur predominantly via aerosolization of virus-laden droplets, the possibility of alternate routes of transmission and reinfection through environmental factors require considerable scientific attention. This review aims to collate information on possible transmission routes of this virus, to ascertain its fate in the environment. Concomitant with the presence of SARS-CoV-2 viral RNA in faeces and saliva of infected patients, studies also indicated its occurrence in raw wastewater, primary sludge and river water. Therefore sewerage system could be a possible route of virus outbreak, a possible tool to assess viral community spread and future surveillance technique. Hence, this review looked into detection, occurrence and fate of SARS-CoV-2 during primary, secondary, and tertiary wastewater and water treatment processes based on published literature on SARS-CoV and other enveloped viruses. The review also highlights the need for focused research on occurrence and fate of SARS-CoV-2 in various environmental matrices. Utilization of this information in environmental transmission models developed for other enveloped and enteric viruses can facilitate risk assessment studies. Preliminary research efforts with SARS-CoV-2 and established scientific reports on other coronaviruses indicate that the threat of virus transmission from the aquatic environment may be currently non-existent. However, the presence of viral RNA in wastewater provides an early warning that highlights the need for effective sewage treatment to prevent a future outbreak of SARS-CoV-2.
HSP40/DNAJ family of proteins is the most diverse chaperone family, comprising about 49 isoforms in humans. Several reports have demonstrated the functional role of a few of these isoforms in the pathogenesis of various viruses, including HIV‐1. Our earlier study has shown that several isoforms of HSP40 get significantly modulated at the mRNA level during HIV‐1 infection in T cells. To explore the biological role of these significantly modulated isoforms, we analyzed their effect on HIV‐1 gene expression and virus production using knockdown and overexpression studies. Among these isoforms, DNAJA3, DNAJB1, DNAJB7, DNAJC4, DNAJC5B, DNAJC5G, DNAJC6, DNAJC22, and DNAJC30 seem to positively regulate virus replication, whereas DNAJB3, DNAJB6, DNAJB8, and DNAJC5 negatively regulate virus replication. Further investigation on the infectivity of the progeny virion demonstrated that only DNAJB8 negatively regulates the progeny virion infectivity. It was further identified that DNAJB8 protein is involved in the downregulation of Vif protein, required for the infectivity of HIV‐1 virions. DNAJB8 seems to direct Vif protein for autophagic‐lysosomal degradation, leading to rescue of the cellular restriction factor APOBEC3G from Vif‐mediated proteasomal degradation, resulting in enhanced packaging of APOBEC3G in budding virions and release of less infective progeny virion particles. Finally, our results also indicate that during the early stage of HIV‐1 infection, enhanced expression of DNAJB8 promotes the production of less infective progeny virions, but at the later stage or at the peak of infection, reduced expression of DNJAB8 protein allows the HIV‐1 to replicate and produce more infective progeny virion particles.
Cancer is the one of the deadliest diseases and takes the lives of millions of people every year across the world. Due to disease heterogeneity and multi-factorial reasons, traditional treatment such as radiation therapy, immunotherapy, or chemotherapy are effective only among a small population of the patients. Tumors can have different fundamental genetic causes and protein expressions that differ from one patient to another. This variability among individual lends itself to the field of precision and personalized medicine. Following the completion of human genome sequencing, significant progress has been observed in the characterization of human epigenome, proteome, and metabolome. Pharmacogenetics and pharmacogenomics use this sequence to study the genetic causes of individual variations in drug response and the simultaneous impact of change in genome that decide the patient's response to drug respectively. On summation, identify the subpopulation of patient and provide them tailored therapy thus increasing the effectiveness of treatment. All these evolved the field of precision or personalized medicine that plays a crucial role in cancer prevention, prognosis, diagnosis, and therapeutics. These tailored therapies are characterized by increased efficiency and reduced toxicity. Not all cancers have genetic variability; some are also influenced by polymorphism of gene encoding enzymes that play an important role in pharmacokinetics of drug. The discoveries of cancer predisposition genes allow diagnosis of a patient at risk of cancer development and let them make the decision on précised individual risk modification characteristic. The use of CYP2D6 genotyping for breast cancer, mutation in KRAS in colorectal cancer, genomic variation in EGFR in small lung cancer, melanoma are some of the examples of importance of cancer predisposition genes. In recent times, distinct molecular subtypes of cancers have been identified with requirement of different treatment for each subtype. Precision medicine shifts the trend from reaction to prevention and forestalls disease progression.
Hepatitis E virus (HEV) egresses from infected hepatocytes as quasienveloped particles containing open reading frame 3 (ORF3) protein. HEV ORF3 (small phosphoprotein) interacts with host proteins to establish a favourable environment for virus replication. It is a functional viroporin that plays an important role during virus release. Our study provides evidence that pORF3 plays a pivotal role in inducing Beclin1-mediated autophagy that helps HEV-1 replication as well as its exit from cells. The ORF3 interacts with host proteins involved in regulation of transcriptional activity, immune response, cellular and molecular processes, and modulation of autophagy, by interacting with proteins, DAPK1, ATG2B, ATG16L2 and also several histone deacetylases (HDACs). For autophagy induction, the ORF3 utilizes non-canonical NF-κB2 pathway and sequesters p52NF-κB and HDAC2 to upregulate DAPK1 expression, leading to enhanced Beclin1 phosphorylation. By sequestering several HDACs, HEV may prevent histone deacetylation to maintain overall cellular transcription intact to promote cell survival. Our findings highlight a novel crosstalk between cell survival pathways participating in ORF3-mediated autophagy
The global public health scenario is worsening gradually as the confirmed cases of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) infections are incessantly escalating with every passing day. The pathological condition caused by SARS-CoV-2 is termed as Coronavirus disease 2019 (COVID-19). The understanding of SARS-CoV-2 transmission dynamics, immunopathogenesis, and the need for early-stage diagnosis and the effective therapeutic regime are the few immediate challenges faced by healthcare professionals worldwide. More specifically, the role of SARS-CoV-2 in the host’s immunopathogenesis response is crucial to determine the disease severity and its clinical outcome in COVID-19 patients. In the present review, we provide insights into the SARS-CoV-2 pathology, host immune responses including innate, cellular, and humoral responses, and immunomodulatory functions of SARS-CoV-2 including cytokine storm and immune evasion. We also shed light upon the present clinical and laboratory-based applications enrolled in the SARS-CoV-2 diagnosis. Taking into consideration the pathogenesis and SARS-CoV-2 immune function, in the present review, we finally provide succinct insights into the SARS-CoV-2 transmission dynamics, immunopathogenesis, with the assessment of the current diagnostic and preventive/ therapeutic strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.