Here, we report a novel method of micropatterning oligonucleotides via aromatic groups as linkers on partially amino-terminated diamond and the inherence on subsequent hybridization. The covalent immobilization of probe oligonucleotides and characterization of immobilized probe oligonucleotides with carboxylic compounds were investigated by X-ray photoelectron spectroscopy (XPS). To confirm the effects of linker flexibility in a low amino group on diamond for probe oligonucleotides, three kinds of dicarboxylic compound--adipic acid, terephthalic acid, and trimesic acid--were used for immobilization of probe oligonucleotides, like linkers; and these oligonucleotides were hybridized with target oligonucleotides labeled with Cy 5 on the micropatterned diamond surface. The hybridization intensities determined by epifluorescence microscopy were compared and analyzed.
The enzyme sensors using electrolyte-solution-gate diamond field effect transistors (SGFETs) have been developed for the first time. The hydrogen-terminated surface channel of the FETs was modified into partially aminated and oxygen-terminated (H-A-O-terminated) with irradiation of ultraviolet in an ammonia environment. The pH response of that is obtained about 50 mV/pH at pH 2–10. The concentration of substrates (urea or glucose) in the electrolyte solution has been detected by the pH change due to the bio-catalyzed effect of enzyme (urease or glucose oxidase), which is immobilized on the channel of SGFETs. The sensitivity of urea and glucose is approximately 30 mV/decade and 20 mV/decade respectively.
Microelectromechanical systems (MEMS) vibratory gyroscopes are used in a wide range of applications. Gyroscopes which have long-term stability and high-reliability even when they are used in harsh environments such as in a wide range of temperatures will be useful for automotive systems and robotics applications.We report a deformation-robust gyroscope, which has three sets of symmetrically arranged folded beams (SAF), which cancel and/or dissipate deformation or internal stress over a wide range of temperatures. In addition, we found that a triangularly supported one-sided open frame by the SAF separated spurious modes from the drive and sensing modes.
We developed a wafer-level two-step anodic bonding process for a combined sensor with two different pressure chambers: ambient and low vacuum pressure. This two-step bonding process features: a bonding and non-bonding area controlled with a glass bump array, an anodic bonding process with plastic deformation of the glass bumps at high temperature and high loading, and two different pressure chambers formed with a sequence of bonding processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.