The generation and fabrication of nanoscopic structures are of critical technological importance for future implementations in areas such as nanodevices and nanotechnology, biosensing, bioimaging, cancer targeting, and drug delivery. Applications of carbon nanotubes (CNTs) in biological fields have been impeded by the incapability of their visualization using conventional methods. Therefore, fluorescence labeling of CNTs with various probes under physiological conditions has become a significant issue for their utilization in biological processes. Herein, we demonstrate a facile and additional fluorophore-free approach for cancer cell-imaging and diagnosis by combining multiwalled CNTs with a well-known conjugated polymer, namely, poly(p-phenylene) (PP). In this approach, PP decorated with poly(ethylene glycol) (PEG) was noncovalently (π-π stacking) linked to acid-treated CNTs. The obtained water self-dispersible, stable, and biocompatible f-CNT/PP-g-PEG conjugates were then bioconjugated to estrogen-specific antibody (anti-ER) via -COOH functionalities present on the side-walls of CNTs. The resulting conjugates were used as an efficient fluorescent probe for targeted imaging of estrogen receptor overexpressed cancer cells, such as MCF-7. In vitro studies and fluorescence microscopy data show that these conjugates can specifically bind to MCF-7 cells with high efficiency. The represented results imply that CNT-based materials could easily be fabricated by the described approach and used as an efficient "fluorescent probe" for targeting and imaging, thereby providing many new possibilities for various applications in biomedical sensing and diagnosis.
A highly stable and sensitive amperometric alcohol biosensor was developed by immobilizing alcohol oxidase (AOX) through Polyamidoamine (PAMAM) dendrimers on a cysteamine-modified gold electrode surface. Ethanol determination is based on the consumption of dissolved oxygen content due to the enzymatic reaction. The decrease in oxygen level was monitored at -0.7 V vs. Ag/AgCl and correlated with ethanol concentration. Optimization of variables affecting the system was performed. The optimized ethanol biosensor showed a wide linearity from 0.025 to 1.0 mM with 100 s response time and detection limit of (LOD) 0.016 mM. In the characterization studies, besides linearity some parameters such as operational and storage stability, reproducibility, repeatability, and substrate specificity were studied in detail. Stability studies showed a good preservation of the bioanalytical properties of the sensor, 67% of its initial sensitivity was kept after 1 month storage at 4 degrees C. The analytical characteristics of the system were also evaluated for alcohol determination in flow injection analysis (FIA) mode. Finally, proposed biosensor was applied for ethanol analysis in various alcoholic beverage as well as offline monitoring of alcohol production through the yeast cultivation.
Primary spontaneous coronary artery dissection is one of the rare causes of acute myocardial infarction. Previous studies reports that it is mostly seen in middle aged women in the last trimester of pregnancy and early postpartum period. Clinical presentation of the disease is variable in pattern and severity related to extent and development rate of dissection. In the last 2 years, nine non-pregnant primary spontaneous coronary artery dissection cases were found in coronary angiography among 3750 patients prediagnosed as coronary artery disease. The cases were presented and discussed with review of the pertinent literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.