Sustainable Urban Mobility Plans (SUMP) are increasingly popular planning tools in cities with environmental issues where numerous actions are usually proposed to reduce pollution from urban transport. However, the diagnosis and implementation of these processes requires broad consensus from all stakeholders and the ability to fit them into urban planning in such a way that it allows the proposals to become realistic actions. In this study, a review of the sustainable urban mobility plans of 47 cities in Spain during the last 15 years has been carried out, analyzing both the diagnosis and proposal of solutions and their subsequent implementation. From the results obtained, a new framework based on a structured hybrid methodology is proposed to aid decision-making for the evaluation of alternatives in the implementation of proposals in SUMP. This hybrid methodology considers experts’ and stakeholders’ opinion and applies two different multi-criteria decision making (MCDM) methods in different phases to present two rankings of best alternatives. From that experience, an analysis based on the MCDM methods called ‘Sequential Interactive Modelling for Urban Systems (SIMUS)’ and weighted sum method (WSM) was applied to a case study of the city of Cartagena, a southeastern middle-size city in Spain. This analytic proposal has been transferred to the practical field in the SUMP of Cartagena, the first instrument of this nature developed after COVID-19 in Spain for a relevant city. The results show how this framework, based on a hybrid methodology, allows the development of complex decision mapping processes using these instruments without obviating the need to generate planning tools that can be transferred from the theoretical framework of urban reality.
This paper considers that actual methods for addressing MODM or MCDM scenarios share two shortcomings along these lines: a) Failing to show equal results when different MCDM methods solve the same problem. b) Inability to replicate actual scenarios, by not taking into account existing conditions, and thus, producing an approximate representation of reality, which obviously, renders not reliable results. This paper shows how the SIMUS method addresses these two shortcomings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.