Phosphatidylinositol 3-kinase-related kinases (PIKKs) play vital roles in the regulation of cell growth, proliferation, survival, and consequently metabolism, as well as in the cellular response to stresses such as ionizing radiation or redox changes. In humans six family members are known to date, namely mammalian/mechanistic target of rapamycin (mTOR), ataxia-telangiectasia mutated (ATM), ataxia- and Rad3-related (ATR), DNA-dependent protein kinase catalytic subunit (DNA-PKcs), suppressor of morphogenesis in genitalia-1 (SMG-1), and transformation/transcription domain-associated protein (TRRAP). All fulfill rather diverse functions and most of them have been detected in different cellular compartments including various cellular membranes. It has been suggested that the regulation of the localization of signaling proteins allows for generating a locally specific output. Moreover, spatial partitioning is expected to improve the reliability of biochemical signaling. Since these assumptions may also be true for the regulation of PIKK function, the current knowledge about the regulation of the localization of PIKKs at different cellular (membrane) compartments by a network of interactions is reviewed. Membrane targeting can involve direct lipid-/membrane interactions as well as interactions with membrane-anchored regulatory proteins, such as, for example, small GTPases, or a combination of both.
FAT C-terminal (FATC) is a circa 33 residue-long domain. It controls the kinase functionality in phosphatidylinositol-3 kinase-related kinases (PIKKs). Recent NMR- and CD-monitored interaction studies indicated that the FATC domains of all PIKKs can interact with membrane mimetics albeit with different preferences for membrane properties such as surface charge and curvature. Thus they may generally act as membrane anchoring unit. Here, we present the H,N, and C chemical shift assignments of the DPC micelle immersed FATC domains of the human PIKKs ataxia-telangiectasia mutated (ATM, residues 3024-3056) and DNA protein kinase catalytic subunit (DNA-PKcs, residues 4096-4128), both fused to the 56 residue long B1 domain of Streptococcal protein G (GB1). Each fusion protein is 100 amino acids long and contains in the linking region between the GB1 tag and the FATC region a thrombin (LVPRGS) and an enterokinase (DDDDK) protease site. The assignments pave the route for the detailed structural characterization of the membrane mimetic bound states, which will help to better understand the role of the proper cellular localization at membranes for the function and regulation of PIKKs. The chemical shift assignment of the GB1 tag is useful for NMR spectroscopists developing new experiments or using GB1 otherwise for case studies in the field of in-cell NMR spectroscopy or protein folding. Moreover it is often used as purification tag. Earlier we showed already that GB1 does not interact with membrane mimetics and thus does not disturb the NMR monitoring of membrane mimetic interactions of attached proteins.
Edited by Wolfgang Peti The Ser/Thr protein kinase ataxia telangiectasia mutated (ATM) plays an important role in the DNA damage response, signaling in response to redox signals, the control of metabolic processes, and mitochondrial homeostasis. ATM localizes to the nucleus and at the plasma membrane, mitochondria, peroxisomes, and other cytoplasmic vesicular structures. It has been shown that the C-terminal FATC domain of human ATM (hAT-Mfatc) can interact with a range of membrane mimetics and may thereby act as a membrane-anchoring unit. Here, NMR structural and 15 N relaxation data, NMR data using spin-labeled micelles, and MD simulations of micelle-associated hATMfatc revealed that it binds the micelle by a dynamic assembly of three helices with many residues of hATMfatc located in the headgroup region. We observed that none of the three helices penetrates the micelle deeply or makes significant tertiary contacts to the other helices. NMR-monitored interaction experiments with hATMfatc variants in which two conserved aromatic residues (Phe 3049 and Trp 3052) were either individually or both replaced by alanine disclosed that the double substitution does not abrogate the interaction with micelles and bicelles at the high concentrations at which these aggregates are typically used, but impairs interactions with small unilamellar vesicles, usually used at much lower lipid concentrations and considered a better mimetic for natural membranes. We conclude that the observed dynamic structure of micelle-associated hATMfatc may enable it to interact with differently composed membranes or membrane-associated interaction partners and thereby regulate ATM's kinase activity. Moreover, the FATC domain of ATM may function as a membrane-anchoring unit for other biomolecules. Ataxia telangiectasia mutated (ATM) 4 belongs to the family of phosphatidylinositol 3-kinase-related kinases (PIKKs) that phosphorylate Ser/Thr residues of proteins regulating processes such as DNA repair, cell cycle progression, cellular senescence, apoptosis, and metabolic processes (1-4). Recently, it was found out that PIKKs also play a role in signaling in response to virus infections and during inflammation (5, 6). The function of ATM and of the related mammalian/mechanistic target of rapamycin (mTOR), a central controller of cell growth and metabolism in all eukaryotes that also has links to DNA repair signaling (7, 8), has further been related to redox signaling (9-12). Whereas the mTOR pathway negatively controls ATM (13), ATM inactivates mTORC1 in response to reactive oxygen species to induce autophagy (12), based on additional data, specifically that of peroxisomes (14). ATM also down-regulates mTORC1 under hypoxic conditions (11). Other studies indicate that ATM plays direct roles in modulating mitochondrial homeostasis (15). Activation of ATM by oxidation and other factors has been reviewed (16). Inactivation of ATM leads to ataxia-telangiectasia (A-T) disease and more generally plays a role in neuronal development and neurodegeneration (17)...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.