Background To directly assess the biological role of oligosaccharides in recombinant equine chorionic gonadotropin (rec-eCG) functioning, cDNA encoding the full-length eCGβ-subunit was fused with the mature protein part of the α-subunit, and we examined the expression levels of deglycosylated eCG mutants, the ovulation rate for deglycosylated mutants in C57BL/6 mice. Results The characterizations of heterodimeric and tethered mutants were studied following their respective secretions in culture medium, molecular weight and ovulation in vivo. Rec-eCG variants containing mutations at glycosylation sites at Asn82 of the α-subunit (eCGβ/αΔ82) and Asn13 of the β-subunit (eCGβΔ13/α) were not efficiently secreted into the culture medium from transfected cells. Western blot analysis revealed that the rec-eCGβ/α proteins have an approximate broad range of molecular weights of 40–46 kDa. Three rec-eCG mutants—a deglycosylated site at Asn56 of the α-subunit (eCGβ/αΔ56), a deletion of the C-terminal region of the β-subunit (eCGβ-D/α), and the double mutant (eCGβ-D/αΔ56)—turned out to have clearly lower (approximately 4–23 kDa) molecular weights. Protein N-glycosydase F (PNGase F) treatment markedly decreased the molecular weight to approximately 2–10 kDa. Normal oocytes were significantly more abundant in the natural eCG–treated group than in mutant rec-eCG–treated groups. In particular, numbers of nonfuntional oocytes were remarkably lower in all rec-eCG groups. Conclusions Our results indicate that the ovulation rates of oocytes are not affected by the deglycosylated rec-eCGβ/α mutant proteins. There are around 20% non-functional oocytes with natural eCG and only 2% with the rec-eCGs tested. These results provide insight into the molecular mechanisms underlying the production of rec-eCG hormones with excellent bioactivity in vivo. Electronic supplementary material The online version of this article (10.1186/s12896-019-0550-6) contains supplementary material, which is available to authorized users.
In the present study, we investigated the signal transduction of mutants of the eel follicle-stimulating hormone receptor (eelFSHR). Specifically, we examined the constitutively activating mutant D540G in the third intracellular loop, and four inactivating mutants (A193V, N195I, R546C, and A548V). To directly assess functional effects, we conducted site-directed mutagenesis to generate mutant receptors. We measured cyclic adenosine monophosphate (cAMP) accumulation via homogeneous time-resolved fluorescence assays in Chinese hamster ovary (CHO-K1) cells and investigated cell surface receptor loss using an enzyme-linked immunosorbent assay in human embryonic kidney (HEK) 293 cells. The cells expressing eelFSHR-D540G exhibited a 23-fold increase in the basal cAMP response without agonist treatment. The cells expressing A193V, N195I, and A548V mutants had completely impaired signal transduction, whereas those expressing the R546C mutant exhibited little increase in cAMP responsiveness and a small increase in signal transduction. Cell surface receptor loss in the cells expressing inactivating mutants A193V, R546C, and A548V was clearly slower than in the cell expressing the wild-type eelFSHR. However, cell surface receptor loss in the cells expressing inactivating mutant N195I decreased in a similar manner to that of the cells expressing the wild-type eelFSHR or the activating mutant D540G, despite the completely impaired cAMP response. These results provide important information regarding the structure–function relationships of G protein-coupled receptors during signal transduction.
Eel luteinizing hormone (eelLH) is composed of a common α-subunit and hormone specific β-subunit, both of which contain asparagine-linked carbohydrate residues, located at positions 56 and 79 on the α-subunit and position 10 on the β-subunit. The specific roles of the individual carbohydrate chains are poorly defined in eel. Thus, we characterized the biologically active single chains by fusing the α-subunit to the carboxyl terminal region of the eelLH β-subunit. Site-directed mutagenesis of the three N-linked glycosylation sites was performed to examine the function of individual glycosylation sites in secretion and signal transduction. The absence of the AsnN-linked sugar chain slightly reduced secretion in Chinese hamster ovary (CHO) cells. The expression of eelLHβ/α (wild-type) in CHO suspension cells was increased by approximately 2-fold higher than that of attached CHO cells. By western blotting analysis, the molecular weight of wild-type was found to be 32 kDa. Mutants (β/α△56, β/α△79, and β△10/α) of the oligosaccharide chain at a single site showed molecular weights that were reduced by approximately 10%. However, the double mutant (β/α△56.79) molecular weight was decreased by more than 20% compared to the wild-type. Enzymatic digestion of oligosaccharides using PNGaseF treatment showed that the molecular weights of all mutants, including wild-type, were reduced to 25 kDa. The results obtained in the absence of carbohydrates at Asn of the α-subunit and at Asn of the β-subunit revealed their roles in signal transduction through the eelLH receptor. The EC value of the cAMP response at Asn of the α-subunit was increased by 5-fold, whereas the maximum response was dramatically reduced to 17.8% of wild-type levels. Specifically, removal of the carbohydrates at double mutant (β/α△56.79) is approximately 85% to wild-type levels in biopotency. These results revealed the site-specific roles of eelLH carbohydrate residues. Our data suggest that N-linked oligosaccharide chains play a pivotal role in biological activity through the eelLH receptor.
Equine chorionic gonadotropin (eCG) is a unique molecule that elicits the response characteristics of both follicle-stimulating hormone (FSH) and luteinizing hormone (LH) in other species. Previous studies from this laboratory had demonstrated that recombinant eCG (rec-eCG) from Chinese hamster ovary (CHO-K1) cells exhibited both FSH- and LH-like activity in rat granulosa and Leydig cells. In this study, we analyzed receptor internalization through rec-eCGs, wild type eCG (eCGβ/α) and mutant eCG (eCGβ/αΔ56) with an N-linked oligosaccharide at Asn56 of the α-subunit. Both the rec-eCGs were obtained from CHO-K1 cells. The agonist activation of receptors was analyzed by measuring stimulation time and concentrations of rec-eCGs. Internalization values in the stably selected rat follicle-stimulating hormone receptor (rFSHR) and rat luteinizing/chorionic gonadotropin receptor (rLH/CGR) were highest at 50 min after stimulation with 10 ng of rec-eCGβ/α. The dose-dependent response was highest when 10 ng of rec-eCGβ/α was used. The deglycosylated eCGβ/αΔ56 mutant did not enhance the agonist-stimulated internalization. We concluded that the state of activation of rFSHR and rLH/CGR could be modulated through agonist-stimulated internalization. Our results suggested that the eLH/CGRs are mostly internalized within 60 min by agonist-stimulation by rec-eCG. We also suggested that the lack of responsiveness of the deglycosylated eCGβ/ αΔ56 was likely because the site of glycosylation played a pivotal role in agonist-stimulated internalization in cells expressing rFSHR and rLH/CGR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.