The palmaris longus is considered a phylogenetic degenerate metacarpophalangeal joint flexor muscle in humans, a small vestigial forearm muscle; it is the most variable muscle in humans, showing variation in position, duplication, slips and could be reverted. It is frequently studied in papers about human anatomical variations in cadavers and in vivo, its variation has importance in medical clinic, surgery, radiological analysis, in studies about high-performance athletes, in genetics and anthropologic studies. Most studies about palmaris longus in humans are associated to frequency or case studies, but comparative anatomy in primates and comparative morphometry were not found in scientific literature. Comparative anatomy associated to morphometry of palmaris longus could explain the degeneration observed in this muscle in two of three of the great apes. Hypothetically, the comparison of the relative length of tendons and belly could indicate the pathway of the degeneration of this muscle, that is, the degeneration could be associated to increased tendon length and decreased belly from more primitive primates to those most derivate, that is, great apes to modern humans. In conclusion, in primates, the tendon of the palmaris longus increase from Lemuriformes to modern humans, that is, from arboreal to terrestrial primates and the muscle became weaker and tending to be missing.
Background: The Global Campaign against Headache collects data from children (7-11 years) and adolescents (12-17 years) both to inform health and education policies and to contribute to the Global Burden of Disease (GBD) study. This survey in Mongolia was part of this global enquiry. Methods: Following the generic protocol for the global enquiry, this was a schools-based cross-sectional survey. Self-completed structured questionnaires were administered, within classes, in seven schools in four districts of the Capital city and three rural areas of Mongolia, selected to represent the country's diversities. Headache diagnostic questions were based on ICHD-3 criteria but for the inclusion of undifferentiated headache (UdH). Results: Of 4515 potential participants, 4266 completed the questionnaire (children 2241 [52.5%], adolescents 2025 [47.5%]; males 2107 [49.4%], females 2159 [50.6%]). Children were therefore slightly over-represented, although overall mean age was 11.3 ± 3.3 years (range: 6-17; median 11). The non-participation proportion was 4.5%. Observed lifetime prevalence of headache was 81.0%. Gender-and age-adjusted 1-year prevalence was 59.4% (migraine: 27.3%; tension-type headache [TTH]: 16.1%; UdH: 6.6%; all headache on ≥15 days/month: 4.2%; probable medication-overuse headache: 0.7%). All headache types except UdH were more prevalent among females than males, and all were more prevalent among adolescents than children, although UdH represented a higher proportion of all headache in children (13.0%) than in adolescents (10.0%). Headache yesterday was reported by 15.9% of the sample, 26.0% of those with headache. Conclusions: At least in adolescents, headache in Mongolia is no less common than in adults. The clear difference from similar studies in other countries was a lower prevalence of UdH, perhaps a consequence of reporting bias in a non-troublesome headache (mild and short-lasting by definition). This study informs policy in Mongolia and, with no similar study yet from elsewhere in Western Pacific Region, makes an important contribution to the global enquiry.
Previous behavioral studies have suggested that l-glutamate, an umami substance, is detected in the gut, and that this information regarding glutamate is conveyed from the gut to the amygdala and the lateral hypothalamus (LH) through the vagus nerve to establish glutamate preference. In this study, we investigated the roles of the amygdala and LH in the information processing of gut glutamate. We recorded the activity of amygdalar and LH neurons during the intragastric administration of five test solutions (monosodium l-glutamate [MSG, 60 mmol/L]; inosine monophosphate [IMP, 60 mmol/L]; a mixture of MSG and IMP; NaCl [60 mmol/L]; or physiological saline) in intact and subdiaphragmatic vagotomized awake rats. In intact rats, 349 and 189 neurons were recorded from the amygdala and LH, respectively, while in vagotomized rats, 104 and 90 neurons were recorded from the amygdala and LH, respectively. In intact rats, similar percentages of neurons (30–60%) in the amygdala and LH responded to the intragastric infusion of the solutions. Vagotomy significantly altered responses to the MSG and NaCl solutions. In particular, vagotomy suppressed the inhibitory responses to the NaCl solution. Furthermore, vagotomy increased the response similarity between the MSG and NaCl solutions, suggesting that vagotomy impaired the coding of the postingestive consequences of the MSG solution in the amygdala and LH, which are unique for glutamate. The present results provide the first neurophysiological evidence that amygdalar and LH neurons process glutamate signals from the gut.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.