History of mental illness is a major factor behind suicide risk and ideation. However research efforts toward characterizing and forecasting this risk is limited due to the paucity of information regarding suicide ideation, exacerbated by the stigma of mental illness. This paper fills gaps in the literature by developing a statistical methodology to infer which individuals could undergo transitions from mental health discourse to suicidal ideation. We utilize semi-anonymous support communities on Reddit as unobtrusive data sources to infer the likelihood of these shifts. We develop language and interactional measures for this purpose, as well as a propensity score matching based statistical approach. Our approach allows us to derive distinct markers of shifts to suicidal ideation. These markers can be modeled in a prediction framework to identify individuals likely to engage in suicidal ideation in the future. We discuss societal and ethical implications of this research.
Depression is a serious and widespread public health challenge. We examine the potential for leveraging social media postings as a new type of lens in understanding depression in populations. Information gleaned from social media bears potential to complement traditional survey techniques in its ability to provide finer grained measurements over time while radically expanding population sample sizes. We present work on using a crowdsourcing methodology to build a large corpus of postings on Twitter that have been shared by individuals diagnosed with clinical depression. Next, we develop a probabilistic model trained on this corpus to determine if posts could indicate depression. The model leverages signals of social activity, emotion, and language manifested on Twitter. Using the model, we introduce a social media depression index that may serve to characterize levels of depression in populations. Geographical, demographic and seasonal patterns of depression given by the measure confirm psychiatric findings and correlate highly with depression statistics reported by the Centers for Disease
We consider social media as a promising tool for public health, focusing on the use of Twitter posts to build predictive models about the influence of childbirth on the forthcoming behavior and mood of new mothers. Using Twitter posts, we quantify postpartum changes in 376 mothers along dimensions of social engagement, emotion, social network, and linguistic style. We then construct statistical models from a training set of observations of these measures before and after the reported childbirth, to forecast significant postpartum changes in mothers. The predictive models can classify mothers who will change significantly following childbirth with an accuracy of 71%, using observations about their prenatal behavior, and as accurately as 80-83% when additionally leveraging the initial 2-3 weeks of postnatal data. The study is motivated by the opportunity to use social media to identify mothers at risk of postpartum depression, an underreported health concern among large populations, and to inform the design of low-cost, privacy-sensitive early-warning systems and intervention programs aimed at promoting wellness postpartum.
The birth of a child is a major milestone in the life of parents. We leverage Facebook data shared voluntarily by 165 new mothers as streams of evidence for characterizing their postnatal experiences. We consider multiple measures including activity, social capital, emotion, and linguistic style in participants' Facebook data in pre-and postnatal periods. Our study includes detecting and predicting onset of post-partum depression (PPD). The work complements recent work on detecting and predicting significant postpartum changes in behavior, language, and affect from Twitter data. In contrast to prior studies, we gain access to ground truth on postpartum experiences via self-reports and a common psychometric instrument used to evaluate PPD. We develop a series of statistical models to predict, from data available before childbirth, a mother's likelihood of PPD. We corroborate our quantitative findings through interviews with mothers experiencing PPD. We find that increased social isolation and lowered availability of social capital on Facebook, are the best predictors of PPD in mothers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.