Even though many studies tested and found Hawan altering biome by killing pathogenic bacteria, fungus, and viruses. Studies are required to further validate its effect on load of viruses, its infectivity and if it can reduce occurrence of flu-like illnesses and their complications. In view of SARS-CoV-2 pandemic and its potential of community spread, one of the measure to curtail community spread may be Indian traditional mass fumigation technique of Hawan, which is considered as cultural practice for health and well being by offering ingredients of medicinal values in to fire. Such processing of specific ingredients through fire is considered turning them to nano-particles and act to alter biome. This paper reviews existing research evidences and suggests future mode of studies on viruses. This also highlights dearth of research capacity for estimation of virus content from the open air samples and the need to strengthen it through potential/ proposed technologies
The diagnostic and therapeutic potential of Maackia amurensis agglutinin (MAA) have been reported in various malignancies. Earlier, we have found that MAA specifically interacted with human non-small cell lung-cancer (NSCLC) cells and induced apoptosis in these cells. The present study was designed to identify M. amurensis leukoagglutinin (MAL-I, one of the components of MAA, having the same carbohydrate specificity as MAA) interacting membrane sialoglycoprotein(s) of two subtypes of human NSCLC cell lines. Nine proteins were identified using two-dimensional (2D)-polyacrylamide gel electrophoresis (PAGE) followed by MAL-I-overlay transblotting and matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF-MS). Among these proteins, HSP60 was selected for further characterization. The sialoglycoprotein nature of membrane-HSP60 of NSCLC cell lines was confirmed by its reduced reactivity with MAL-I in Western blots in the presence of GM2 and by dual staining of the cell lines with MAL-I and HSP60-antibody. These findings were further substantiated by enzymatic analysis of membrane-HSP60 as well as in-silico evidence regarding this protein. Our observations were validated by immunohistochemical analysis of both subtypes of NSCLC tissue sections. Membrane-HSP60 was found to be involved in the inhibition of MAL-I-induced morphological alteration of NSCLC cells and also in the proliferation and migration of these cells, indicating the probable role of sialylated membrane-HSP60 in this disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.