Marine pollution due to oil spills is of great concern globally for their impact on the health of marine ecosystems. We assessed the genotoxic effects and oxidative stress due to genotoxic pollutants accumulated from the ambient marine environment in the tissues of marine rock oyster, Saccostrea cucullata along the Arabian Sea coast around Goa, India. The extent of DNA damage in S. cucullata was determined by comet assay as variation of comet parameter: mean % tail DNA along the coast with respect to that at the reference site (Tiracol, Goa, India). In addition, the oxidative stress responses of rock oysters exposed to marine pollutants such as polycyclic aromatic hydrocarbons (PAHs) were assessed as a function of variation in antioxidant enzyme activities such as glutathione-s-transferase (GST), catalase (CAT) and superoxide dismutase (SOD) along the coast. Spearman correlation analysis showed significant correlation between different components of PAHs (viz., 2-3-PAH, 4-6-PAH and oxy-PAH) in the tissues of the rock oysters and the antioxidant enzyme activities. The antioxidant enzyme activities in S. cucullata increased with increasing concentrations of PAHs in tissues in the following order of sampling sites: Tiracol < Arambol < Betul < Velsao. Among the PAHs, oxy-PAH was found to be most predominant in causing DNA damage in S. cucullata. These results provide an insight into environmental genotoxicity and oxidative stress induced by PAHs along the Arabian Sea coast, India.
In this paper, we present an evaluation of genotoxic responses in marine diatom, Chaetoceros tenuissimus, isolated from Kandla Creek (lat 23.03° N, long 70.22° E), Gujarat, India, in terms of impairment of DNA integrity as a function of their exposure to elevated levels of mercury (Hg) under laboratory conditions. DNA integrity in C. tenuissimus was determined by partial alkaline unwinding assay. To our knowledge, this is the first such genotoxicity study to be conducted on marine diatom cultures towards understanding the relationship between Hg toxicity and DNA damage. Furthermore, we studied the impact of Hg on the growth of C. tenuissimus as a function of their exposure to enhanced levels of Hg in terms of decreasing chlorophyll a (chl a) concentrations. The data show the genotoxic effect of Hg on the growth of C. tenuissimus as well as DNA integrity to a great extent. Based on the results of our investigations, it is suggested that C. tenuissimus can be used as sentinel species for bio-monitoring of pollution due to genotoxic contaminants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.