The requirement to operate aircraft at low-altitude near the terrain is common in the military community and essential for helicopters. The risk and crew workload in this flight regime is severe, with navigation, guidance, and obstacle avoidance demanding high attention. A guidance system relying on digitized terrain elevation maps has been developed that employs airborne navigation, mission requirements, aircraft performance limits, and radar altimeter returns to generate a valley-seeking, low-altitude trajectory between waypoints for display to the pilot. This system has been flight demonstrated to 150 ft above ground level altitude, and is primarily limited by the ability of the pilot to perform obstacle detection and avoidance. In this study, a wide field of view forward sensor has been modeled and incorporated in the guidance system for the purpose of relieving the pilot of the obstacle avoidance duty. The results of a piloted, motion-based simulation of this enhanced low-altitude guidance system is presented. Simulated flights to 50 ft altitude in the presence of obstacles were demonstrated while maintaining situational awareness and close tracking of the guidance trajectory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.