As the need of indoor spatial information has grown, many applications have been developed. Nevertheless, the major representations of indoor spatial information are on the 2D or 3D, recently, the service based on omnidirectional image has increased. Current service based on omni-directional image is used just for viewer. To provide various applications which can serve the identifying the attribute of indoor space, query based services and so on, topological data which can define the spatial relationships between spaces is required. For developing diverse applications based on omni-directional image, this study proposes the method to generate IndoorGML data which is the international standard of indoor topological data model. The proposed method is consist of 3 step to generate IndoorGML data; 1) Analysis the core elements to adopt IndoorGML concept to image, 2) Propose the method to identify the element of 'Space' which is the core element of IndoorGML concept, 3) Define the connectivity of indoor spaces. The proposed method is implemented at the 6-floor of 21century-building of the University of Seoul to generate IndoorGML data and the demo service is implemented based on the generated data. This study has the significance to propose a method to generate the indoor topological data for the indoor spatial information services based on the IndoorGML. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http:// creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
The purpose of this paper is to propose a data transformation method for visualizing the statistical information based on the grid system which has regular shape and size. Grid is better solution than administrator boundary or census block to check the distribution of the statistical information and be able to use as a spatial unit on the map flexibly. On the other hand, we need the additional process to convert the various statistical information to grid if we use the current method which is areal interpolation. Therefore, this paper proposes the 3 steps to convert the various statistical information to grid. 1)Geocoding the statistical information, 2)Converting the spatial information through the defining the spatial relationship, 3)Attribute transformation considering the data scale measurement. This method applies to the population density of Seoul to convert to the grid. Especially, spatial autocorrelation is performed to check the consistency of grid display if the reference data is different for same statistic information. As a result, both distribution of grid are similar to each other when the population density data which is represented by census block and building is converted to grid. Through the result of implementation, it is demonstrated to be able to perform the consistent data conversion based on the proposed method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.