Text reuse is becoming a serious issue in many fields and research shows that it is much harder to detect when it occurs across languages. The recent rise in multi-lingual content on the Web has increased cross-language text reuse to an unprecedented scale. Although researchers have proposed methods to detect it, one major drawback is the unavailability of large-scale gold standard evaluation resources built on real cases. To overcome this problem, we propose a cross-language sentence/passage level text reuse corpus for the English-Urdu language pair. The Cross-Language English-Urdu Corpus (CLEU) has source text in English whereas the derived text is in Urdu. It contains in total 3,235 sentence/passage pairs manually tagged into three categories that is near copy, paraphrased copy, and independently written. Further, as a second contribution, we evaluate the Translation plus Mono-lingual Analysis method using three sets of experiments on the proposed dataset to highlight its usefulness. Evaluation results (f 1 =0.732 binary, f 1 =0.552 ternary classification) indicate that it is harder to detect cross-language real cases of text reuse, especially when the language pairs have unrelated scripts. The corpus is a useful benchmark resource for the future development and assessment of cross-language text reuse detection systems for the English-Urdu language pair.
In the recent years, many benchmark author profiling corpora have been developed for various genres including Twitter, social media, blogs, hotel reviews and e-mail, etc. However, no such standard evaluation resource has been developed for Short Messaging Service (SMS), a popular medium of communication, which is very useful for author profiling. The primary aim of this study is to develop a large multilingual (English and Roman Urdu) benchmark SMS-based author profiling corpus. The proposed corpus contains 810 author profiles, wherein each profile consists of an aggregation of SMS messages as a single document of an author, along with seven demographic traits associated with each author profile: gender, age, native language, native city, qualification, occupation and personality type (introvert/extrovert). The secondary aims of this study include the following: (1) annotating the proposed corpus for code-switching annotations at the lexical level (approximately 0.69 million tokens are manually annotated for code-switching) and (2) applying the stylometry-based method (groups of sixty-four features) and the content-based method (twelve features) for gender identification in order to demonstrate how our proposed corpus can be used for the development and evaluation of various author profiling methods. The results show that the content-based character 5-gram feature outperformed all the other features by obtaining the accuracy score of 0.975 andF1score of 0.947 for gender identification while using the entire corpus. Furthermore, our proposed corpora (SMS–AP–18 and code-switched SMS–AP–18) are freely and publicly available for research purpose.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.