Abstract-Recently network virtualization has been proposed as a promising way to overcome the current ossification of the Internet by allowing multiple heterogeneous virtual networks (VNs) to coexist on a shared infrastructure. A major challenge in this respect is the VN embedding problem that deals with efficient mapping of virtual nodes and virtual links onto the substrate network resources. Since this problem is known to be N P-hard, previous research focused on designing heuristic-based algorithms which had clear separation between the node mapping and the link mapping phases. This paper proposes VN embedding algorithms with better coordination between the two phases. We formulate the VN embedding problem as a mixed integer program through substrate network augmentation. We then relax the integer constraints to obtain a linear program, and devise two VN embedding algorithms D-ViNE and R-ViNE using deterministic and randomized rounding techniques, respectively. Simulation experiments show that the proposed algorithms increase the acceptance ratio and the revenue while decreasing the cost incurred by the substrate network in the long run.
International audienceNetwork virtualization can offer more flexibility and better manageability for the future Internet by allowing multiple heterogeneous virtual networks (VN) to coexist on a shared infrastructure provider (InP) network. A major challenge in this respect is the VN embedding problem that deals with the efficient mapping of virtual resources on InP network resources. Previous research focused on heuristic algorithms for the VN embedding problem assuming that the InP network remains operational at all times. In this paper, we remove that assumption by formulating the survivable virtual network embedding (SVNE) problem and developing a hybrid policy heuristic to solve it. The policy is based on a fast re-routing strategy and utilizes a pre-reserved quota for backup on each physical link. Evaluation results show that our proposed heuristic for SVNE outperforms baseline heuristics in terms of long term business profit for the InP, acceptance ratio, bandwidth efficiency, and response time
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.