<p>Chronic disease (CD) such as kidney disease and causes severe challenging issues to the people all around the world. Chronic kidney disease (CKD) and diabetes mellitus (DM) are considered in this paper. Predicting the diseases in earlier stage, gives better preventive measures to the people. Healthcare domain leads to tremendous cost savings and improved health status of the society. The main objective of this paper is to develop an algorithm to predict CKD occurrence using machine learning (ML) technique. The commonly used classification algorithms namely logistic regression (LR), random forest (RF), conditional random forest (CRF), and recurrent neural networks (RNN) are considered to predict the disease at an earlier stage. The proposed algorithm in this paper uses medical code data to predict disease at an earlier stage.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.