There is an urgent need for new antimalarial drugs with novel mechanisms of action to deliver effective control and eradication programs. Parasite resistance to all existing antimalarial classes, including the artemisinins, has been reported during their clinical use. A failure to generate new antimalarials with novel mechanisms of action that circumvent the current resistance challenges will contribute to a resurgence in the disease which would represent a global health emergency. Here we present a unique generation of quinolone lead antimalarials with a dual mechanism of action against two respiratory enzymes, NADH:ubiquinone oxidoreductase (Plasmodium falciparum NDH2) and cytochrome bc 1 . Inhibitor specificity for the two enzymes can be controlled subtly by manipulation of the privileged quinolone core at the 2 or 3 position. Inhibitors display potent (nanomolar) activity against both parasite enzymes and against multidrug-resistant P. falciparum parasites as evidenced by rapid and selective depolarization of the parasite mitochondrial membrane potential, leading to a disruption of pyrimidine metabolism and parasite death. Several analogs also display activity against liver-stage parasites (Plasmodium cynomolgi) as well as transmission-blocking properties. Lead optimized molecules also display potent oral antimalarial activity in the Plasmodium berghei mouse malaria model associated with favorable pharmacokinetic features that are aligned with a single-dose treatment. The ease and low cost of synthesis of these inhibitors fulfill the target product profile for the generation of a potent, safe, and inexpensive drug with the potential for eventual clinical deployment in the control and eradication of falciparum malaria.T he discovery of atovaquone 20 years ago validated the malaria parasite's mitochondrial electron transport chain (ETC) as an exploitable drug target. Atovaquone targets the ETC at the level of the bc 1 complex (1), with inhibition preventing proton pumping, resulting in a loss of mitochondrial membrane potential (2) and eventual organelle dysfunction, an important function of which is to provide intermediates for pyrimidine synthesis (3, 4). The bc 1 complex requires reducing equivalents provided by ubiquinol, which in turn is generated by membrane-bound dehydrogenases upstream in the ETC that catalyze redox reactions by reducing ubiquinone. The parasite lacks the canonical protonmotive NADH dehydrogenase (Complex I) but instead harbors a bacterial-like type II NADH:ubiquinone oxidoreductase, Plasmodium falciparum NDH2 (PfNDH2) (5). Based on these key observations, we undertook a drug-discovery initiative to develop costeffective inhibitors capable of inhibiting PfNDH2 with the goal of providing antimalarials that overcome the limitations of the expensive atovaquone. Although our initial drug-discovery efforts were focused on optimization of activity versus PfNDH2, we found, during hit-to-lead development, that optimized structures with single-digit nanomolar activity versus the primary target ...
Objectives: To evaluate the advantages and disadvantages of telemedicine among physicians during the COVID-19 pandemic. To assess the awareness about telemedicine among physicians and determine their opinions about telemedicine in the post-pandemic era. Methods: A cross-sectional study was conducted at government hospitals (King Faisal Medical Complex [KFMC]-King Abdulaziz Specialist Hospital [KASH]) in Taif, Kingdom of Saudi Arabia (KSA), from May-August 2020. Taif is a small city in the western region of KSA with a population of 689,000 and 2 main hospitals (KFMC & KASH) which also serve rural areas close to Taif city. A total of 36 physicians practiced telemedicine, only 25 physicians accepted to participate in this study. Results: Thirty-six percent of the responders believed that telemedicine could improve the effectiveness of therapeutic intervention and 44% believed that the quality of care was enhanced using telemedicine. Difficulty in reaching the correct diagnosis due to the lack of physical examination was one of the disadvantages that faced the participants. Conclusion: Telemedicine should be part of medical services but should not completely replace physicians’ personal interaction. Telemedicine could be continued for stable remotely residing patients even after the COVID-19 pandemic.
BackgroundLeishmania parasites must overcome several barriers to achieve transmission by their sand fly vectors. One of the earliest threats is exposure to enzymes during blood meal digestion. Trypsin-like enzymes appear to be detrimental to parasite survival during the very early phase of development as amastigotes transform into promastigote stages. Here, we investigate whether parasites can affect trypsin secretion by the sand fly midgut epithelium and if inhibition of this process is of survival value to the parasites.ResultsInfections of Lutzomyia longipalpis with Leishmania mexicana were studied and these showed that infected sand flies produced less trypsin-like enzyme activity during blood meal digestion when compared to uninfected controls. RNA interference was used to inhibit trypsin 1 gene expression by micro-injection into the thorax, as trypsin 1 is the major blood meal induced trypsin activity in the sand fly midgut. Injection of specific double stranded RNA reduced trypsin 1 expression as assessed by RT-PCR and enzyme assays, and also led to increased numbers of parasites in comparison with mock-injected controls. Injection by itself was observed to have an inhibitory effect on the level of infection, possibly through stimulation of a wound repair or immune response by the sand fly.ConclusionLeishmania mexicana was shown to be able to modulate trypsin secretion by Lutzomyia longipalpis to its own advantage, and direct inhibition of trypsin gene expression led to increased parasite numbers in the midguts of infected flies. Successful application of RNA interference methodology to Leishmania-infected sand flies now opens up the use of this technique to study a wide range of sand fly genes and their role in the parasite-vector interaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.