Beauveria bassiana is being used as a biopesticide for many insect pests. Neem oil (azadirachtin) is an eco-safe popular botanical pesticide. A biopesticde with a neem compatible isolate of B. bassiana will enable their simultaneous use in pest management. A sample of 30 isolates of B. bassiana from culture collections was screened for compatibility with a commercial formulation of neem oil (Margoside † ) at the field recommended dose (0.3%, v/v). Compatibility was tested in vitro through germination and growth assays. In all isolates, conidial germination was delayed but not significantly decreased by neem. In the growth assays, 23 isolates were found compatible with neem. In the neem sensitive isolates, growth was decreased but not totally inhibited. The effect of combined treatment with B. bassiana and neem in comparison to single treatments with either of them on Spodoptera litura Fabricius was tested in laboratory bioassays. The combined treatment was found to have synergistic effect on insect mortality when a B. bassiana isolate compatible with neem was used, while, with an isolate sensitive to neem, an antagonistic effect was observed.
Beauveria bassiana (Balsamo Á Crivelli) Vuillemin based mycoinsecticides are used against agricultural, veterinary and medical insect pests. The fungus has a very diverse and extensive host range. Variation in virulence among isolates of B. bassiana to different insect species has been abundantly documented. Given the effect of multiple factors on virulence, it is not certain whether the observed difference in virulence can be labelled as host specificity. Environmental conditions and susceptibility of the insect population are two main factors that affect successful fungal infection. Keeping the environmental factors constant, if virulence of an isolate to different insect species and different populations within an insect species is compared, the scale of difference between the two responses can be estimated. If differences in virulence of an isolate to different insect species are greater than the difference in virulence to different insect populations within an insect species, then, the isolate can be considered as exhibiting specific preference to those insect species towards which it exhibits high virulence. To examine this feature, a worldwide sample of B. bassiana was bioassayed on nine insect species and two different populations within two insect species. Laboratory bioassays were done on: Bombyx mori (Lepidoptera), Spodoptera litura (Lepidoptera), Chilo partellus (Lepidoptera), Helicoverpa armigera (Lepidoptera), Epilachna vigintioctopunctata (Coleoptera), Mylabris pustulata (Coleoptera), Aphis craccivora (Homoptera), Maconellicoccus hirsutus (Hemiptera) and Oecophylla smaragdina (Hymenoptera). The range of variation in virulence of a B. bassiana isolate to different insect species was not more than that observed with different populations within a single insect species. B. bassiana is thus a generalist with no strict host preference. B. bassiana based biopesticide can be used as a broad spectrum insecticide against a myriad of insect pests.
Congenital muscular torticollis results from shortening or excessive contraction of the sternocleidomastoid (SCM) muscle. The reported incidence varies between 0.4 and 1.9%. Various theories have been proposed, but its true aetiology remains obscure. The deformity is characterized by a practically painless, contracted cordlike SCM muscle, which pulls the head toward the side affected, narrows and draws the shoulder upward, forcing the chin in the opposite direction. Torticollis of congenital origin is a deformity not commonly met with in the practice of maxillofacial surgery. The rarity, lack of, or inadequacy of the previous treatment, together with the advanced age and marked deformity appear to warrant an investigation and report of the outcome. A case of congenital muscular torticollis is presented who reported at the age of 18 years and has been successfully treated by unipolar SCM release.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.