The SARS-CoV-2 B.1.617.2 (Delta) variant was first identified in the state of Maharashtra in late 2020 and spread throughout India, outcompeting pre-existing lineages including B.1.617.1 (Kappa) and B.1.1.7 (Alpha) 1 . In vitro, B.1.617.2 is 6-fold less sensitive to serum neutralising antibodies from recovered individuals, and 8-fold less sensitive to vaccine-elicited antibodies as compared to wild type (WT) Wuhan-1 bearing D614G. Serum neutralising titres against B.1.617.2 were lower in ChAdOx-1 versus BNT162b2 vaccinees. B.1.617.2 spike pseudotyped viruses exhibited compromised sensitivity to monoclonal antibodies against the receptor binding domain (RBD) and N-terminal domain (NTD). B.1.617.2 demonstrated higher replication efficiency in both airway organoid and human airway epithelial systems compared to B.1.1.7, associated with B.1.617.2 spike in a predominantly cleaved state compared to B.1.1.7. The B.1.617.2 spike protein was able to mediate highly efficient syncytium formation that was less sensitive to inhibition by neutralising antibody as compared to WT spike. Additionally we observed that B.1.617.2 had higher replication and spike mediated entry as compared to B.1.617.1, potentially explaining B.1.617.2 dominance. In an analysis of over 130 SARS-CoV-2 infected healthcare workers across three centres in India during a period of mixed lineage circulation, we observed reduced ChAdOx-1 vaccine effectiveness against B.1.617.2 relative to non-B.1.617.2, with the caveat of possible residual confounding. Compromised vaccine efficacy against the highly fit and immune evasive B.1.617.2 Delta variant warrants continued infection control measures in the post-vaccination era. India's first wave of SARS-CoV-2 infections in mid-2020 was relatively mild and was controlled by a nationwide lockdown. Since easing of restrictions, India has seen expansion in cases of COVID-19 since March
After escaping relatively unscathed during the first wave of the COVID-19 pandemic, India witnessed a ferocious second COVID-19 wave, starting in March 2021 and accounting for about half of global cases by the first week of May. SARS-CoV-2 had spread widely throughout India in the first wave, with the third national serosurvey in January 2021 finding that 21.4% of adults and 25.3% of 10-to 17-year-old adolescents were seropositive (1). Delhi, the national capital, was not included in the national serosurvey but had undergone multiple periods of high transmission in 2020 (Fig. 1A). In a district-wise stratified serosurvey conducted by the Delhi Government in January 2021, overall seropositivity was reported to be 56.1% (95% CI, 55.5-56.8%), ranging from 49.1% to 62.2% across 11 districts (2). This was expected to confer some protection from future outbreaks.Despite high seropositivity, Delhi was amongst the most affected cities during the second wave. The rise in new cases was exceptionally rapid in April, going from approximately 2000 to 20,000 between 31 March and 16 April. This was accompanied by a rapid rise in hospitalizations and ICU admissions (Fig. 1B). In this emergency situation with saturated bed occupancy by 12 April, major private hospitals were declared by the state as full COVID care-only and senior medical students, including from alternative medicine branches, were pressed into service (3). Deaths rose proportionately (Fig. 1C) and the case-fatality ratio (CFR), estimated as the scaling factor between time-advanced cases and deaths (Fig. 1D), was stable (mean, SD; 1.9, 0.3%). Population spread of SARS-CoV-2 is underestimated by test positive cases alone (1, 2). To better understand the degree of spread and the factors leading to the unexpectedly severe outbreak, we used all available data including testing, sequencing, serosurveys, and serially followed cohorts.In the absence of finely resolved or serial data from national and state surveys, we focused on data for Delhi participants of a national serosurvey of Council of Scientific and
Defining the molecular genetic alterations underlying pancreatic cancer may provide unique therapeutic insight for this deadly disease. Toward this goal, we report here an integrative DNA microarray and sequencing-based analysis of pancreatic cancer genomes. Notable among the alterations newly identified, genomic deletions, mutations, and rearrangements recurrently targeted genes encoding components of the SWItch/Sucrose NonFermentable (SWI/SNF) chromatin remodeling complex, including all three putative DNA binding subunits (ARID1A, ARID1B, and PBRM1) and both enzymatic subunits (SMARCA2 and SMARCA4). Whereas alterations of each individual SWI/SNF subunit occurred at modest-frequency, as mutational "hills" in the genomic landscape, together they affected at least one-third of all pancreatic cancers, defining SWI/SNF as a major mutational "mountain." Consistent with a tumor-suppressive role, re-expression of SMARCA4 in SMARCA4-deficient pancreatic cancer cell lines reduced cell growth and promoted senescence, whereas its overexpression in a SWI/SNFintact line had no such effect. In addition, expression profiling analyses revealed that SWI/SNF likely antagonizes Polycomb repressive complex 2, implicating this as one possible mechanism of tumor suppression. Our findings reveal SWI/SNF to be a central tumor suppressive complex in pancreatic cancer.comparative genomic hybridization array | cancer gene discovery | tumor suppressor P ancreatic ductal adenocarcinoma, more commonly known as pancreatic cancer, remains a leading cause of cancer deaths in the developed world (1, 2). Each year, the number of patients diagnosed with pancreatic cancer is nearly equal to the number that will die from the disease, underscoring the inadequacy of current therapies. Indeed, the overall 5-y survival rate is less than 5% (3). A more complete characterization of its molecular pathogenesis may suggest new avenues for targeted therapy.Much has been learned of the molecular genetic alterations underlying pancreatic cancer (reviewed in 4, 5). Early events, identified in early precursor lesions [pancreatic intraepithelial neoplasia (PanIN)], include activational mutation (and/or amplification) of the KRAS2 oncogene, occurring in 75-90% of pancreatic cancers, and inactivation of the CDKN2A (p16 INK4A ) cell-cycle regulator in 80-95% of cases. Later events (identified in more advanced PanIN) include inactivation of the TP53 tumor suppressor in 50-75% of pancreatic cancers, and loss of SMAD4 (DPC4) in 45-55% of cases.
Pancreatic cancer, the fourth leading cause of cancer death in the United States, is frequently associated with the amplification and deletion of specific oncogenes and tumor-suppressor genes (TSGs), respectively. To identify such novel alterations and to discover the underlying genes, we performed comparative genomic hybridization on a set of 22 human pancreatic cancer cell lines, using cDNA microarrays measuring approximately 26,000 human genes (thereby providing an average mapping resolution of <60 kb). To define the subset of amplified and deleted genes with correspondingly altered expression, we also profiled mRNA levels in parallel using the same cDNA microarray platform. In total, we identified 14 high-level amplifications (38-4934 kb in size) and 15 homozygous deletions (46-725 kb). We discovered novel localized amplicons, suggesting previously unrecognized candidate oncogenes at 6p21, 7q21 (SMURF1, TRRAP), 11q22 (BIRC2, BIRC3), 12p12, 14q24 (TGFB3), 17q12, and 19q13. Likewise, we identified novel polymerase chain reaction-validated homozygous deletions indicating new candidate TSGs at 6q25, 8p23, 8p22 (TUSC3), 9q33 (TNC, TNFSF15), 10q22, 10q24 (CHUK), 11p15 (DKK3), 16q23, 18q23, 21q22 (PRDM15, ANKRD3), and Xp11. Our findings suggest candidate genes and pathways, which may contribute to the development or progression of pancreatic cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.