Deep Learning methods are state-of-the-art approaches for pixel-based hyperspectral images (HSI) classification. High classification accuracy has been achieved by extracting deep features from both spatial-spectral channels. However, the efficiency of such spatial-spectral approaches depends on the spatial dimension of each patch and there is no theoretically valid approach to find the optimum spatial dimension to be considered. It is more valid to extract spatial features by considering varying neighborhood scales in spatial dimensions. In this regard, this article proposes a deep convolutional neural network (CNN) model wherein three different multi-scale spatial-spectral patches are used to extract the features in both the spatial and spectral channels. In order to extract these potential features, the proposed deep learning architecture takes three patches various scales in spatial dimension. 3D convolution is performed on each selected patch and the process runs through entire image. The proposed is named as multi-scale three-dimensional convolutional neural network (MS-3DCNN). The efficiency of the proposed model is being verified through the experimental studies on three publicly available benchmark datasets including Pavia University, Indian Pines, and Salinas. It is empirically proved that the classification accuracy of the proposed model is improved when compared with the remaining state-of-the-art methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.