Background:Cancer is one of the major heterogeneous disease with high morbidity and mortality with poor prognosis. Elevated levels of reactive oxygen species (ROS), alteration in redox balance, and deregulated redox signaling are common hallmarks of cancer progression and resistance to treatment. Mitochondria contribute mainly in the generation of ROS during oxidative phosphorylation. Elevated levels of ROS have been detected in cancers cells due to high metabolic activity, cellular signaling, peroxisomal activity, mitochondrial dysfunction, activation of oncogene, and increased enzymatic activity of oxidases, cyclooxygenases, lipoxygenases, and thymidine phosphorylases. Cells maintain intracellular homeostasis by developing an immense antioxidant system including catalase, superoxide dismutase, and glutathione peroxidase. Besides these enzymes exist an important antioxidant glutathione and transcription factor Nrf2 which contribute in balancing oxidative stress. Reactive oxygen species–mediated signaling pathways activate pro-oncogenic signaling which eases in cancer progression, angiogenesis, and survival. Concomitantly, to maintain ROS homeostasis and evade cancer cell death, an increased level of antioxidant capacity is associated with cancer cells.Conclusions:This review focuses the role of ROS in cancer survival pathways and importance of targeting the ROS signal involved in cancer development, which is a new strategy in cancer treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.