Growth of the antibody market has fueled the development of alternative expression systems such as glycoengineered yeast. Although intact antibody expression levels in excess of 1 g L(-1) have been demonstrated in glycoengineered yeast, this is still significantly below the titers reported for antibody fragments in fungal expression systems. This study presents a simplified approach to estimate antibody secretion kinetics and oxygen uptake rate requirements as a function of growth-rate controlled by a limiting methanol feed rate in glycoengineered Pichia pastoris. The yield of biomass from methanol and the specific oxygen requirements predicted in this study compare well with values reported in the literature for wild-type P. pastoris, indicating the intrinsic nature of these yields independent of glycoengineering or the heterologous protein expressed. Specific productivity was found to be a non-linear function of specific growth rate. Based on comparison with relationships between specific growth rate and specific productivity reported in the literature this correlation seems empirical in nature and cannot be established a priori. These correlations were then used in a simple mass balance based model to predict the cultivation performance of carbon limited cultivations under oxygen transfer limited conditions to indicate the usefulness of this approach to predict large scale performance and aid in process development.
Human serum albumin (HSA) is a cysteine rich molecule that is most abundant in human blood plasma. To remain viable in the market due to lower marketing costs for HSA, it is important to produce a large quantity in an economical manner by recombinant technology. The objective of this study was to maximize recombinant HSA (rHSA) production using a Mut(s) Pichia pastoris strain by fermentation process optimization. We evaluated the impact of process parameters on the production of rHSA, including induction cell density (wet cell weight, g/L) and the control of specific growth rate at induction. In this study, we demonstrated that induction cell density is a critical factor for high level production of rHSA under controlled specific growth rate. We observed higher specific productivities at higher induction cell densities (285 g/L) and at lower specific growth rates (0.0022-0.0024/h) during methanol induction phase, and achieved the broth titer of rHSA up to 10 g/L. The temperature shift from 24 to 28(o) C was effective to control the specific growth rate at low level (≤0.0024/h) during methanol induction phase while maintaining high specific productivity [0.0908 mgrHSA /(gwcw h)].
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.