Highly pathogenic avian influenza viruses of the H5N1 subtype continue to threaten agriculture and human health. Here, we use biochemistry and x-ray crystallography to reveal how amino-acid variations in the hemagglutinin (HA) protein contribute to the pathogenicity of H5N1 influenza virus in chickens. HA proteins from highly pathogenic (HP) A/chicken/Hong Kong/YU562/2001 and moderately pathogenic (MP) A/goose/Hong Kong/437-10/1999 isolates of H5N1 were found to be expressed and cleaved in similar amounts, and both proteins had similar receptor-binding properties. However, amino-acid variations at positions 104 and 115 in the vestigial esterase sub-domain of the HA1 receptor-binding domain (RBD) were found to modulate the pH of HA activation such that the HP and MP HA proteins are activated for membrane fusion at pH 5.7 and 5.3, respectively. In general, an increase in H5N1 pathogenicity in chickens was found to correlate with an increase in the pH of HA activation for mutant and chimeric HA proteins in the observed range of pH 5.2 to 6.0. We determined a crystal structure of the MP HA protein at 2.50 Å resolution and two structures of HP HA at 2.95 and 3.10 Å resolution. Residues 104 and 115 that modulate the acid stability of the HA protein are situated at the N- and C-termini of the 110-helix in the vestigial esterase sub-domain, which interacts with the B loop of the HA2 stalk domain. Interactions between the 110-helix and the stalk domain appear to be important in regulating HA protein acid stability, which in turn modulates influenza virus replication and pathogenesis. Overall, an optimal activation pH of the HA protein is found to be necessary for high pathogenicity by H5N1 influenza virus in avian species.
The cancer metastasis suppressor protein KAI1/CD82 is a member of the tetraspanin superfamily. Recent studies have demonstrated that tetraspanins are palmitoylated and that palmitoylation contributes to the organization of tetraspanin webs or tetraspanin-enriched microdomains. However, the effect of palmitoylation on tetraspanin-mediated cellular functions remains obscure. In this study, we found that tetraspanin KAI1/ CD82 was palmitoylated when expressed in PC3 metastatic prostate cancer cells and that palmitoylation involved all of the cytoplasmic cysteine residues proximal to the plasma membrane. Notably, the palmitoylationdeficient KAI1/CD82 mutant largely reversed the wild-type KAI1/CD82's inhibitory effects on migration and invasion of PC3 cells. Also, palmitoylation regulates the subcellular distribution of KAI1/CD82 and its association with other tetraspanins, suggesting that the localized interaction of KAI1/CD82 with tetraspanin webs or tetraspanin-enriched microdomains is important for KAI1/CD82's motility-inhibitory activity. Moreover, we found that KAI1/CD82 palmitoylation affected motility-related subcellular events such as lamellipodia formation and actin cytoskeleton organization and that the alteration of these processes likely contributes to KAI1/CD82's inhibition of motility. Finally, the reversal of cell motility seen in the palmitoylation-deficient KAI1/CD82 mutant correlates with regaining of p130 CAS -CrkII coupling, a signaling step important for KAI1/ CD82's activity. Taken together, our results indicate that palmitoylation is crucial for the functional integrity of tetraspanin KAI1/CD82 during the suppression of cancer cell migration and invasion.
c Astroviruses are small, nonenveloped, single-stranded RNA viruses that cause diarrhea in a wide variety of mammals and birds. On the surface of the viral capsid are globular spikes that are thought to be involved in attachment to host cells. To understand the basis of species specificity, we investigated the structure of an avian astrovirus capsid spike and compared it to a previously reported human astrovirus capsid spike structure. Here we report the crystal structure of the turkey astrovirus 2 (TAstV-2) capsid surface spike domain, determined to 1.5-Å resolution, and identify three conserved patches on the surface of the spike that are candidate avian receptor-binding sites. Surprisingly, the overall TAstV-2 capsid spike structure is unique, with only distant structural similarities to the human astrovirus capsid spike and other viral capsid spikes. There is an absence of conserved putative receptor-binding sites between the human and avian spikes. However, there is evidence for carbohydrate-binding sites in both human and avian spikes, and studies with human astrovirus 1 (HAstV-1) suggest a minor role in infection for chondroitin sulfate but not heparin. Overall, our structural and functional studies provide new insights into astrovirus host cell entry, species specificity, and evolution.A stroviruses are small, nonenveloped RNA viruses that are associated with diarrhea in a wide variety of species. The Astroviridae family is composed of two genera, Mamastrovirus and Avastrovirus, that infect mammalian and avian species, respectively. Members of the Mamastrovirus genus include human astroviruses, which are one of the leading causes of gastroenteritis in children under the age of 2 years, immunocompromised people, and the elderly (1-3). Infection with human astrovirus serotype 1 (HAstV-1) is most commonly detected, although eight canonical serotypes of HAstV (HAstV-1 to -8) and several noncanonical human genogroups have been isolated with various frequencies (4, 5). In poultry, infections with members of the Avastrovirus genus have been shown to cause disease, growth defects, and mortality in a wide variety of poultry, including chickens, turkeys, and ducks (6-10).Astroviruses possess single-stranded, positive-sense RNA genomes containing three open reading frames: ORF1a, ORF1b, and ORF2. These encode the viral nonstructural proteins, the viral RNA-dependent RNA polymerase, and the viral capsid protein, respectively (11-16). The astrovirus capsid is responsible for attachment and entry into host cells (15,17). The capsid is a multidomain protein with a conserved N-terminal region and a highly variable C-terminal region (18-22). The conserved N-terminal region, comprising the basic, S, and P1 domains, encompasses the viral genome and forms the shell of the capsid (20, 23). The highly variable C-terminal region comprises the spike (also called the P2 domain) and acidic domains (23). The acidic domain is removed from the virion by host cell caspases (24, 25), leaving only the spikes projecting from the capsid ...
The disease mechanisms associated with the onset of astrovirus diarrhea are unknown. Unlike other enteric virus infections, astrovirus infection is not associated with an inflammatory response or cellular damage. In vitro studies in differentiated Caco-2 cells demonstrated that human astrovirus serotype 1 (HAstV-1) capsid protein alone disrupts the actin cytoskeleton and tight junction complex, leading to increased epithelial barrier permeability. In this study, we show that oral administration of purified recombinant turkey astrovirus 2 (TAstV-2) capsid protein results in acute diarrhea in a dose- and time-dependent manner in turkey poults. Similarly to that induced by infectious virus, TAstV-2 capsid-induced diarrhea was independent of inflammation or histological changes but was associated with increased intestinal barrier permeability, as well as redistribution of sodium hydrogen exchanger 3 (NHE3) from the membrane to the cytoplasm of the intestinal epithelium. Unlike other viral enterotoxins that have been identified, astrovirus capsid induces diarrhea after oral administration, reproducing the natural route of infection and demonstrating that ingestion of intact noninfectious capsid protein may be sufficient to provoke acute diarrhea. Based on these data, we hypothesize that the astrovirus capsid acts like an enterotoxin and induces intestinal epithelial barrier dysfunction.
We have developed a producer cell line that generates lentiviral vector particles of high titer. The vector encodes the Wiskott-Aldrich syndrome (WAS) protein. An insulator element has been added to the long terminal repeats of the integrated vector to limit proto-oncogene activation. The vector provides high-level, stable expression of WAS protein in transduced murine and human hematopoietic cells. We have also developed a monoclonal antibody specific for intracellular WAS protein. This antibody has been used to monitor expression in blood and bone marrow cells after transfer into lineage negative bone marrow cells from WAS mice and in a WAS negative human B-cell line. Persistent expression of the transgene has been observed in transduced murine cells 12–20 weeks following transplantation. The producer cell line and the specific monoclonal antibody will facilitate the development of a clinical protocol for gene transfer into WAS protein deficient stem cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.