Epilepsy is one of the chronic neurological disorders that is characterized by a sudden burst of excess electricity in the brain. This abnormality appears as a seizure, the detection of which is an important research topic. An important tool used to study brain activity features, neurological disorders and particularly epileptic seizures, is known as electroencephalography (EEG). The visual inspection of epileptic abnormalities in EEG signals by neurologists is time-consuming. Different scientific approaches have been used to accurately detect epileptic seizures from EEG signals, and most of those approaches have obtained good performance. In this study, deep learning based on convolutional neural networks (CNN) was considered to increase the performance of the identification system of epileptic seizures. We applied a cross-validation technique in the design phase of the system. For efficiency, comparative results between other machine-learning approaches and deep CNNs have been obtained. The experiments were performed using standard datasets. The results obtained indicate the efficiency of using CNN in the detection of epilepsy.
In this paper, a human–machine interface for disabled people with spinal cord injuries is proposed. The designed human–machine interface is an assistive system that uses head movements and blinking for mouse control. In the proposed system, by moving one's head, the user moves the mouse pointer to the required coordinates and then blinks to send commands. The considered head mouse control is based on image processing including facial recognition, in particular, the recognition of the eyes, mouth, and nose. The proposed recognition system is based on the convolutional neural network, which uses the low‐quality images that are captured by a computer's camera. The convolutional neural network (CNN) includes convolutional layers, a pooling layer, and a fully connected network. The CNN transforms the head movements to the actual coordinates of the mouse. The designed system allows people with disabilities to control a mouse pointer with head movements and to control mouse buttons with blinks. The results of the experiments demonstrate that this system is robust and accurate. This invention allows people with disabilities to freely control mouse cursors and mouse buttons without wearing any equipment.
Improving the quality, developing and implementing systems that can provide advantages to students, and predicting students’ success during the term, at the end of the term, or in the future are some of the primary aims of education. Due to its unique ability to create relationships and obtain accurate results, artificial intelligence and machine learning are tools used in this field to achieve the expected goals. However, the diversity of studies and the differences in their content create confusion and reduce their ability to pioneer future studies. In this study, we performed a systematic literature review of student performance prediction studies in three different databases between 2010 and 2020. The results are presented as percentages by categorizing them as either model, dataset, validation, evaluation, or aims. The common points and differences in the studies are determined, and critical gaps and possible remedies are presented. The results and identified gaps could be eliminated with standardized evaluation and validation strategies. It is determined that student performance prediction studies should be more frequently focused on deep learning models in the future. Finally, the problems that can be solved using a global dataset created by a global education information consortium, as well as its advantages, are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.