Cisplatin-based chemotherapy is responsible for a large number of renal failures, and it is still associated with high rates of mortality today. Oleuropein (OLE) presents a plethora of pharmacological beneficial properties. In this study we investigated whether OLE could provide sufficient protection against cisplatin-induced nephrotoxicity. With this aim, Sprague-Dawley rats were divided into eight groups: control; 7 mg/kg/d cisplatin, 50 mg/kg, 100 mg/kg, and 200 mg/kg OLE; and treatment with OLE for 3 days starting at 24 hours following cisplatin injection. After exposure to the chemotherapy agent and OLE, oxidative DNA damage was quantitated in the renal tissue of experimental animals by measuring the amount of 8-hydroxy-2'-deoxyguanosine (8-OHdG) adducts. Malondialdehyde (MDA) level, total oxidative stress (TOS), and total antioxidant status (TAS) were assessed to determine the oxidative injury in kidney cells. The histology of the kidney was examined using four different staining methods: hematoxylin-eosin (H&E), periodic acid Schiff (PAS), Masson trichrome, and amyloid. In addition, the blood urea nitrogen (BUN), uric acid (UA), and creatinine (CRE) levels were established. Our experimental data showed that tissue 8-OHdG levels were significantly higher in the cisplatin group when compared to the control group. The glomerular cells were sensitive to cisplatin as tubular cells. In addition, treatment with cisplatin elevated the levels of BUN, UA, CRE, and TOS, but lowered the level of TAS compared to the control group. The OLE therapy modulated oxidative stress in order to restore normal kidney function and reduced the formation of 8-OHdG induced by cisplatin. Furthermore, the OLE treatment significantly reduced pathological findings in renal tissue. We demonstrate for the first time that OLE presents significant cytoprotective properties against cisplatin-induced genotoxicity by restoring the antioxidant system of the renal tissue. According to our findings, OLE is a promising novel natural source for the prevention of serious kidney damage in current chemotherapies.
Acute pancreatitis (AP) may cause significant persistent multi-organ dysfunction. Carvacrol (CAR) possesses a variety of biological and pharmacological properties. The aim of the present study was to analyze the hepatic protection of CAR on AP induced by cerulein and to explore the underlying mechanism using in vivo studies. The rats were randomized into groups to receive (1) no therapy; (2) 50 lg/kg cerulein at 1-h intervals by four intraperitoneal injection (i.p.); (3) 50, 100 and 200 mg/kg CAR by one i.p.; and (4) cerulein ? CAR after 2 h of cerulein injection. 12 h later, serum was provided to assess the blood AST, ALT and LDH values. Also, liver tissues were obtained for histological and biochemical measurements. Liver oxidative stress markers were evaluated by changes in the amount of lipid peroxides measured as MDA and changes in tissue antioxidant enzyme levels, SOD, CAT and GSHPx. Histopathological examination was performed using scoring systems. Oxidative damage to DNA was quantitated in studied tissues of experimental animals by measuring the increase in 8-hydroxydeoxyguanosine (8-OHdG) formations. We found that the increasing doses of CAR decreased pancreatitisinduced MDA and 8-OH-dG levels. Moreover, the liver SOD, CAT and GSH-Px activities in the AP ? CAR group were higher than that of the rats in the AP group. In the treatment groups, AST, ALT and LDH were reduced. Besides, necrosis, coagulation and inflammation in the liver were alleviated (p \ 0.05). We suggest that CAR could be a safe and potent new drug candidate for treating AP through its antioxidative mechanism of action for the treatment of a wide range of disorders related to hepatic dysfunction.
The current systemic treatments of the various solid tumors involve Cisplatin (CIS)-based chemotherapy. Due to its cytotoxicity, this approach is limited. Moreover, the safety of CIS is only discussed especially in breast and stomach cancers. Therefore, we, for the first time, explored the restorative efficacy of oleuropein (OLE), in stomach and lung injuries induced by CIS. Sprague-Dawley rats were divided into eight groups: control CIS, OLE and CIS + OLE. Single dose of (7 mg/kg) CIS was administered intraperitoneally to CIS and CIS + OLE groups. After 24 h, 50, 100 and 200 mg/kg OLE was given for three consecutive days to OLE and CIS + OLE groups. The 8-OH-dG, total oxidative/antioxidant status (TOS/TAS) and malondialdehyde (MDA) levels were evaluated and histopathological analyses were performed on the studied tissues. The results indicated that CIS significantly increased 8-OH-dG, MDA and TOS levels and caused severe tissue damages. However, high dose of OLE induced a significant decrease in the 8-OH-dG, MDA levels, an increase in TAS levels and it restores CIS-induced tissue damages. We hope that the results of this study will provide an impetus for future studies on novel therapeutic strategies including the protective use of oleuropein in gastric and lung cancers due to chemotherapy.
Acute pancreatitis (AP) is considered as major problem around the world and the incidence of AP is increasing. Carvacrol (CAR), a monoterpenic phenol, has good antioxidant activity. This in vivo study was designed to evaluate whether CAR provide protection against AP that developed by pancreas injury. The rats were randomised into groups to receive (I) no therapy; (II) 50 lg/kg cerulein at 1 h intervals by four intraperitonally (i.p.) injections; (III) 50, 100 and 200 mg/kg CAR by one i.p. injection; and (IV) cerulein plus CAR after 2 h of cerulein administration. 12 h later, serum samples were obtained to assess pancreatic function, the lipase and amylase values. The oxidative stress markers were evaluated by changes in the amount of lipid peroxides measured as malondialdehyde (MDA) and changes in main tissue antioxidant enzyme levels including SOD, CAT and GSH-PX. Histopathological examination was performed using scoring systems. Additionally, oxidative DNA damage was determined by measuring the increases of 8-hydroxy-deoxyguanosine (8-OH-dG) formations. We found that the increasing doses of CAR decreased AP-induced MDA and 8-OH-dG levels. Moreover, the pancreas antioxidant enzyme activities were higher than that of the rats in the AP group when compared to the AP plus CAR group. In the treatment groups, the lipase and amylase were reduced. Besides, histopathological findings in the pancreatic tissue were alleviated (p \ 0.05). We suggest that CAR could be a safe and potent new drug candidate for treating AP through its antioxidative mechanism of action for the treatment of a wide range of disorders related to pancreas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.