Bone marrow-derived mesenchymal stem cells (BM-MSCs) can differentiate into many lineages. Although the growing interest in BM-MSCs has led to a number of characterization studies, some important biochemical and immunohistochemical properties are still lacking. In this study, morphological and immunophenotypic properties of BM-MSCs were examined in detail. Differentiation potential and growth kinetics of adult rat BM-MSCs were also determined. Immunohistochemistry and RT-PCR results indicated that BM-MSCs expressed myogenic (desmin, myogenin, myosin IIa, and alpha-SMA), neurogenic (gamma-enolase, MAP2a,b, c-fos, nestin, GFAP and beta III tubulin), and osteogenic (osteonectin, osteocalcin, osteopontin, Runx-2, BMP-2, BMP-4 and type I collagen) markers without stimulation towards differentiation. These expression patterns indicated why these cells can easily differentiate into multiple lineages both in vitro and in vivo. Ultrastructural characteristics of rBM-MSCs showed more developed and metabolically active cells.
The level of heterogeneity among the isolated stem cells makes them less valuable for clinical use. The purpose of this study was to understand the level of heterogeneity among human dental pulp derived mesenchymal stem cells by using basic cell biology and proteomic approaches. The cells were isolated from a natal (NDPSCs), an exfoliated deciduous (stem cells from human exfoliated deciduous (SHED)), and an impacted third molar (DPSCs) tooth of three different donors. All three stem cells displayed similar features related to morphology, proliferation rates, expression of various cell surface markers, and differentiation potentials into adipocytes, osteocytes, and chondrocytes. Furthermore, using 2DE approach coupled with MALDI-TOF/TOF, we have generated a common 2DE profile for all three stem cells. We found that 62.3 ± 7% of the protein spots were conserved among the three mesenchymal stem cell lines. Sixty-one of these conserved spots were identified by MALDI-TOF/TOF analysis. Classification of the identified proteins based on biological function revealed that structurally important proteins and proteins that are involved in protein folding machinery are predominantly expressed by all three stem cell lines. Some of these proteins may hold importance in understanding specific properties of human dental pulp derived mesenchymal stem cells.
Several solvent-producing clostridia, including Clostridium acetobutylicum and C. beijerinckii, were previously shown to be nitrogen-fixing organisms based on the incorporation of 15N2 into cellular material. The key nitrogen-fixation (nif) genes, including nifH, nifD, and nifK for nitrogenase component proteins as well as nifE, nifN, nifB and nifV for synthesis of the iron-molybdenum cofactor (FeMoco) of nitrogenase, have now been identified in C. acetobutylicum or C. beijerinckii or both. The organization of these genes is similar to the distinctive pattern that was first observed in Clostridium pasteurianum, with the nifN and nifB genes fused into the nifN-B gene and with the nifV gene split into the nifVomega and nifValpha genes. The corresponding nif genes of these three clostridial species are highly related to each other. However, in the two solvent-producing clostridia, the nifH and nifD genes are interspersed by two glnB-like genes, which are absent in the corresponding region in C. pasteurianum. However, the nifN-B and nifVomega genes of C. pasteurianum are interspersed by the putative modA and modB genes (for molybdate transport), which are absent in the corresponding region in C. acetobutylicum. C. acetobutylicum and C. beijerinckii grew well under nitrogen-fixing conditions, and the acetylene-reducing activity of nitrogenase was measured in the two species. Acetone, butanol, and isopropanol production occurred in nitrogen-fixing cultures, but the peak of nitrogen-fixing activity preceded the active solventogenic phase.
Models of Golgi apparatus biogenesis and maintenance are focused on two possibilities: one is self‐assembly from the endoplasmic reticulum, and the other is nucleation by a stable template. Here, we asked in three different experimental situations whether assembly of the Golgi apparatus might be dynamically nucleated. During microtubule depolymerization, the integral membrane protein p27 and the peripheral Golgi protein GM130, appeared in newly formed, scattered Golgi elements before three different Golgi apparatus cisternal enzymes, whereas GRASP55, a medial peripheral Golgi protein, showed, if anything, a tendency to accumulate in scattered Golgi elements later than a cisternal enzyme. During Golgi formation after brefeldin A washout, endoplasmic reticulum exit of Golgi resident enzymes could be completely separated from that of p27 and GM130. p27 and GM130 accumulation was onto newly organized perinuclear structures, not brefeldin A remnants, and preceded that of a cisternal enzyme. Reassembly was completely sensitive to guanosine 5′‐diphosphate‐restricted Sar1p. When cells were microinjected with Sar1pWT DNA to reverse a guanosine 5′‐diphosphate‐restricted Sar1p endoplasmic reticulum‐exit block phenotype, GM130 and p27 collected perinuclearly with little to no exit of a cisternal enzyme from the endoplasmic reticulum. The overall data strongly indicate that the assembly of the Golgi apparatus can be nucleated dynamically by GM130/p27 associated structures. We define dynamic nucleation as the first step in a staged organelle assembly process in which new component association forms a microscopically visible structure onto which other components add later, e.g. Golgi cisternae.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.