Combined efforts in the fields of neuroscience, computer science, and biology allowed to design biologically realistic models of the brain based on spiking neural networks. For a proper validation of these models, an embodiment in a dynamic and rich sensory environment, where the model is exposed to a realistic sensory-motor task, is needed. Due to the complexity of these brain models that, at the current stage, cannot deal with real-time constraints, it is not possible to embed them into a real-world task. Rather, the embodiment has to be simulated as well. While adequate tools exist to simulate either complex neural networks or robots and their environments, there is so far no tool that allows to easily establish a communication between brain and body models. The Neurorobotics Platform is a new web-based environment that aims to fill this gap by offering scientists and technology developers a software infrastructure allowing them to connect brain models to detailed simulations of robot bodies and environments and to use the resulting neurorobotic systems for in silico experimentation. In order to simplify the workflow and reduce the level of the required programming skills, the platform provides editors for the specification of experimental sequences and conditions, environments, robots, and brain–body connectors. In addition to that, a variety of existing robots and environments are provided. This work presents the architecture of the first release of the Neurorobotics Platform developed in subproject 10 “Neurorobotics” of the Human Brain Project (HBP).1 At the current state, the Neurorobotics Platform allows researchers to design and run basic experiments in neurorobotics using simulated robots and simulated environments linked to simplified versions of brain models. We illustrate the capabilities of the platform with three example experiments: a Braitenberg task implemented on a mobile robot, a sensory-motor learning task based on a robotic controller, and a visual tracking embedding a retina model on the iCub humanoid robot. These use-cases allow to assess the applicability of the Neurorobotics Platform for robotic tasks as well as in neuroscientific experiments.
In this article we describe implementations of various bio-inspired algorithms for obtaining the chemical gas concentration map of an environment filled with a contaminant. The experiments are performed using Khepera III and miniQ miniature mobile robots equipped with chemical gas sensors in an environment with ethanol gas. We implement and investigate the performance of decentralized and asynchronous particle swarm optimization (DAPSO), bacterial foraging optimization (BFO), and ant colony optimization (ACO) algorithms. Moreover, we implement sweeping (sequential search algorithm) as a base case for comparison with the implemented algorithms. During the experiments at each step the robots send their sensor readings and position data to a remote computer where the data is combined, filtered, and interpolated to form the chemical concentration map of the environment. The robots also exchange this information among each other and cooperate in the DAPSO and ACO algorithms. The performance of the implemented algorithms is compared in terms of the quality of the maps obtained and success of locating the target gas sources.TÜBİTAK ; European Commissio
Ahstract-In this article we present implementation of Bac terial Foraging Optimization algorithm inspired search by multiple robots in an unknown area in order to find the region with highest chemical gas concentration as well as to build the chemical gas concentration map. The searching and map building tasks are accomplished by using mobile robots equipped with smart transducers for gas sensing called "KheNose". Robots perform the search autonomously via bacte rial chemotactic behavior. Moreover, simultaneously the robots send their sensor readings of the chemical concentration and their position data to a remote computer (a base station), where the data is combined, interpolated, and filtered to form an real time map of the chemical gas concentration in the environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.