We propose an evolutionary metaheuristic for multiobjective combinatorial optimization problems that interacts with the decision maker (DM) to guide the search effort toward his or her preferred solutions. Solutions are presented to the DM, whose pairwise comparisons are then used to estimate the desirability or fitness of newly generated solutions. The evolutionary algorithm comprising the skeleton of the metaheuristic makes use of selection strategies specifically designed to address the multiobjective nature of the problem. Interactions with the DM are triggered by a probabilistic evaluation of estimated fitnesses, while memory structures with indifference thresholds restrict the presentation of solutions resembling those that have already been rejected. The algorithm has been tested on a number of random instances of the Multiobjective Knapsack Problem (MOKP) and the Multiobjective Spanning Tree Problem (MOST). Simulation results indicate that the algorithm requires only a small number of comparisons to be made for satisfactory solutions to be found.Evolutionary Algorithm, Multiobjective Combinatorial Optimization, Metaheuristic
In this paper, we present an exact algorithm to find all extreme supported nondominated points of multiobjective mixed integer programs. The algorithm uses a composite linear objective function and finds all the desired points in a finite number of steps by changing the weights of the objective functions in a systematic way. We develop further variations of the algorithm to improve its computational performance and demonstrate our algorithm's performance on multiobjective assignment, knapsack, and traveling salesperson problems with three and four objectives.multiobjective optimization, nondominated points, exact algorithm
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.