A three-step detergent-mediated reconstitution has been applied to the incorporation of a glycosylphosphatidylinositol -protein into liposomes. The protein studied was alkaline phosphatase from bovine intestine. Liposomes prepared by dialysis were treated with various amounts of two detergents, either n-octyl j3-D-glucoside or Triton X-100. At different steps of the solubilization process, protein was added and the detergent was removed by hydrophobic resins. The most efficient reconstitutions were obtained with an octyl glucoside concentration corresponding to the onset of liposome solubilization and with a Triton X-100 concentration leading to partial solubilization of the liposomes. The involvement of the glycosyl-phosphatidylinositol anchor in alkaline phosphatase reconstitution was demonstrated by the inability of phosphoinositol-specific phospholipase-C-hydrolysed alkaline phosphatase to incorporate into liposomes. Between 70-85% of the protein associated with liposomes were anchored in the outer leaflet of the bilayer, oriented towards the outside of the liposome. The remainder was trapped within the lumen of the liposomes.
The denaturation of dimeric cytoplasmic MM-creatine kinase by sodium dodecyl sulfate (SDS) has been investigated using activity measurements, far-ultraviolet circular dichroism, SEC-HPLC, electric birefringence, intrinsic probes (cysteine and tryptophan residues), and an extrinsic fluorescent probe (ANS). Our results show that inactivation is the first detectable event; the inactivation curve midpoint is located around 0.9 mM SDS. The second event is dissociation and it occurs in parallel to tertiary and secondary perturbations, as demonstrated by the coincidence (near 1.3 mM) of the midpoints of the transition curves monitoring dissociation and structural changes. At high total SDS concentration (concentration higher than 2.5 mM), the monomer had bound 170 mol of SDS per mol of protein. In these conditions, electric birefringence experiments suggest that the SDS-CK complex may be described as a prolate ellipsoid with an axial ratio of 1.27 (14 nm x 11 nm). These results are compatible with recent models of SDS-protein complexes: the "protein decorated micelle structure" or the "necklace structure".
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.