MicroRNAs (miRNAs) are evolutionary conserved small RNAs that post‐transcriptionally regulate the expression of target genes. To date, the role of miRNAs in liver development is not fully understood. By using an experimental model that allows the induced and controlled differentiation of mouse fetal hepatoblasts (MFHs) into mature hepatocytes, we identified miR‐148a as a hepatospecific miRNA highly expressed in adult liver. The main finding of this study revealed that miR‐148a was critical for hepatic differentiation through the direct targeting of DNA methyltransferase (DNMT) 1, a major enzyme responsible for epigenetic silencing, thereby allowing the promotion of the “adult liver” phenotype. It was also confirmed that the reduction of DNMT1 by RNA interference significantly promoted the expression of the major hepatic biomarkers. In addition to the essential role of miR‐148a in hepatocyte maturation, we identified its beneficial effect through the repression of hepatocellular carcinoma (HCC) cell malignancy. miR‐148a expression was frequently down‐regulated in biopsies of HCC patients as well as in mouse and human HCC cell lines. Overexpressing miR‐148a led to an enhancement of albumin production and a drastic inhibition of the invasive properties of HCC cells, whereas miR‐148a silencing had the opposite consequences. Finally, we showed that miR‐148a exerted its tumor‐suppressive effect by regulating the c‐Met oncogene, regardless of the DNMT1 expression level. Conclusion: miR‐148a is essential for the physiology of the liver because it promotes the hepatospecific phenotype and acts as a tumor suppressor. Most important, this report is the first to demonstrate a functional role for a specific miRNA in liver development through regulation of the DNMT1 enzyme. (Hepatology 2013;53:1153–1165)
Bovine herpesvirus 4 (BoHV-4) has been isolated from cattle throughout the world, but virological and serological studies have suggested that the African buffalo is also a natural host for this virus. It has previously been found that the Bo17 gene of BoHV-4 was acquired from an ancestor of the African buffalo, probably around 1?5 million years ago. Analysis of the variation of the Bo17 gene sequence among BoHV-4 strains suggested a relatively ancient transmission of BoHV-4 from the buffalo to the Bos primigenius lineage, followed by a host-dependent split between zebu and taurine BoHV-4 strains. In the present study, the evolutionary history of BoHV-4 was investigated by analysis of five gene sequences from each of nine strains representative of the viral species: three isolated from African buffalo in Kenya and six from cattle from Europe, North America and India. No two gene sequences had the same evolutionary tree, indicating that recombination has occurred between divergent lineages; six recombination events were delineated for these sequences. Nevertheless, exchange has been infrequent enough that a clonal evolutionary history of the strains could be discerned, upon which the recombination events were superimposed. The dates of divergence among BoHV-4 lineages were estimated from synonymous nucleotide-substitution rates. The inferred evolutionary history suggests that African buffalo were the original natural reservoir of BoHV-4 and that there have been at least three independent transmissions from buffalo to cattle, probably via intermediate hosts and-at least in the case of North American strains-within the last 500 years. An independent observation supports the role of the African buffalo as the original host species of BoHV-4. The GenBank/EMBL/DDBJ accession numbers for the nucleotide sequences determined in this work are AY847305-AY847311 and AY847322-AY847348. Supplementary tables with primer details and GenBank accession numbers for the BoHV-4 sequenced regions are available in JGV Online.
The hepatitis B virus (HBV) is a small enveloped DNA virus that belongs to the Hepadnaviridae family. HBV can cause acute and persistent infection which can lead to hepatocellular carcinoma (HCC). MicroRNAs (miRNAs) play a crucial role in the main cellular events. The dysregulation of their expression has been linked to the development of the cancer as well as to viral interference. This chapter will describe the involvement of miRNAs in the case of HBV infection and their implication in the development of the HBV-related diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.