Tubulin is subject to a special cycle of detyrosination͞tyrosination in which the C-terminal tyrosine of ␣-tubulin is cyclically removed by a carboxypeptidase and readded by a tubulin-tyrosine-ligase (TTL). This tyrosination cycle is conserved in evolution, yet its physiological importance is unknown. Here, we find that TTL suppression in mice causes perinatal death. A minor pool of tyrosinated (Tyr-)tubulin persists in TTL null tissues, being present mainly in dividing TTL null cells where it originates from tubulin synthesis, but it is lacking in postmitotic TTL null cells such as neurons, which is apparently deleterious because early death in TTL null mice is, at least in part, accounted for by a disorganization of neuronal networks, including a disruption of the cortico-thalamic loop. Correlatively, cultured TTL null neurons display morphogenetic anomalies including an accelerated and erratic time course of neurite outgrowth and a premature axonal differentiation. These anomalies may involve a mislocalization of CLIP170, which we find lacking in neurite extensions and growth cones of TTL null neurons. Our results demonstrate a vital role of TTL for neuronal organization and suggest a requirement of Tyr-tubulin for proper control of neurite extensions.CLIP170 ͉ tubulin code
Neurons contain abundant subsets of highly stable microtubules that resist depolymerizing conditions such as exposure to the cold. Stable microtubules are thought to be essential for neuronal development, maintenance, and function. Previous work has indicated an important role of the microtubule-associated protein STOP in the induction of microtubule cold stability. Here, we developed STOP null mice. These mice were devoid of cold-stable microtubules. In contrast to our expectations, STOP−/− mice had no detectable defects in brain anatomy but showed synaptic defects, with depleted synaptic vesicle pools and impaired synaptic plasticity, associated with severe behavioral disorders. A survey of the effects of psychotropic drugs on STOP−/− mice behavior showed a remarkable and specific effect of long-term administration of neuroleptics in alleviating these disorders. This study demonstrates that STOP is a major factor responsible for the intriguing stability properties of neuronal microtubules and is important for synaptic plasticity. Additionally, STOP−/− mice may yield a pertinent model for study of neuroleptics in illnesses such as schizophrenia, currently thought to result from synaptic defects.
Protein kinase CK2 is a ubiquitous protein kinase implicated in proliferation and cell survival. Its regulatory  subunit, CK2, which is encoded by a single gene in mammals, has been suspected of regulating other protein kinases. In this work, we show that knockout of the CK2 gene in mice leads to postimplantation lethality. Mutant embryos were reduced in size at embryonic day 6.5 (E6.5). They did not exhibit signs of apoptosis but did show reduced cell proliferation. Mutant embryos were resorbed at E7.5. In vitro, CK2 ؊/؊ morula development stopped after the blastocyst stage. Attempts to generate homozygous embryonic stem (ES) cells failed. By using a conditional knockout approach, we show that lack of CK2 is deleterious for mouse ES cells and primary embryonic fibroblasts. This is in contrast to what occurs with yeast cells, which can survive without functional CK2. Thus, our study demonstrates that in mammals, CK2 is essential for viability at the cellular level, possibly because it acquired new functions during evolution.Protein kinase CK2 is a pleiotropic and highly conserved protein kinase with more than 300 substrates described to date. It seems to be involved in controlling a large panel of normal cellular functions such as gene expression, protein synthesis, cell cycle, and proliferation, as well as pathological processes such as carcinogenesis and viral tumorigenesis (12, 33). Recently, its function in protecting cells against apoptosis has been reported (1).CK2 is a tetrameric holoenzyme generally composed of two catalytic subunits, ␣ and ␣Ј, and two regulatory  subunits which combine to form an ␣␣Ј 2 , ␣ 2  2 , or ␣Ј 2  2 heterotetramer. The catalytic CK2 subunits ␣ and ␣Ј belong to the eukaryotic protein kinase superfamily. In contrast, the regulatory  subunit is a unique protein encoded by a single gene in mammals (3) and does not belong to a known protein family.CK2 has several functions in the holoenzyme complex. Reconstitution experiments with recombinant purified subunits have demonstrated that CK2 modulates the activity of CK2. Depending on the substrate, CK2 activates or downregulates the activity of the catalytic subunit (24). CK2 also confers stability to the holoenzyme complex (18) and seems to mediate interaction with a number of substrates (19).The crystal structure elucidations of the isolated CK2 subunit (5) and of the holoenzyme complex (28) indicate that the  subunit exists as a dimer and is the building block of the CK2 holoenzyme bridging the two catalytic subunits. The crystal structure is also consistent with the suggested flexible role of the  subunit as a docking partner for other protein kinases and other interacting partners in the cell (28).Functional and biochemical studies have indicated that fractions of both the catalytic and regulatory subunits may exist separately. A population of CK2␣ that binds to protein phosphatase 2A is free of CK2 (16). Moreover, CK2 fractions devoid of the catalytic subunit, but probably involved in complexes with other prote...
Rationale: Mutations in the MYBPC3 gene encoding cardiac myosin-binding protein (cMyBP)-C are frequent causes of hypertrophic cardiomyopathy, but the mechanisms leading from mutations to disease remain elusive. Objective: The goal of the present study was therefore to gain insights into the mechanisms controlling the expression of MYBPC3 mutations. Methods and Results: We developed a cMyBP-C knock-in mouse carrying a point mutation. The level of total cMyBP-C mRNAs was 50% and 80% lower in heterozygotes and homozygotes, respectively. Surprisingly, the single G>A transition on the last nucleotide of exon 6 resulted in 3 different mutant mRNAs: missense (exchange of G for A), nonsense (exon skipping, frameshift, and premature stop codon) and deletion/insertion (as nonsense but with additional partial retention of downstream intron, restoring of the reading frame, and almost full-length protein). Inhibition of nonsense-mediated mRNA decay in cultured cardiac myocytes or in vivo with emetine or cycloheximide increased the level of nonsense mRNAs severalfold but not of the other mRNAs. By using sequential protein fractionation and a new antibody directed against novel amino acids produced by the frameshift, we showed that inhibition of the proteasome with epoxomicin via osmotic minipumps increased the level of (near) full-length mutants but not of truncated proteins. Homozygotes exhibited myocyte and left ventricular hypertrophy, reduced fractional shortening, and interstitial fibrosis; heterozygotes had no major phenotype. Conclusions: These data reveal (1) an unanticipated complexity of the expression of a single point mutation in the whole animal and (2) the involvement of both nonsense-mediated mRNA decay and the ubiquitin-proteasome system in lowering the level of mutant proteins. (Circ Res. 2009;105:239-248.)Key Words: cardiomyopathy Ⅲ hypertrophic cardiomyopathy Ⅲ mRNA stability Ⅲ transgenic mice Ⅲ ubiquitin C ardiac myosin-binding protein (cMyBP)-C is a major component of the A-band of the sarcomere, where it interacts with myosin, actin and titin (see elsewhere 1,2 and reviewed previously 3 ). It is exclusively expressed in the heart in humans and mice. 4,5 Its role has been enigmatic for long, but accumulating recent evidence suggests that cMyBP-C is essential for normal diastolic relaxation by inhibiting actin-myosin interactions at low intracellular Ca 2ϩ concentrations. 6 -10 Mutations in MYBPC3 encoding cMyBP-C cause hypertrophic cardiomyopathy (HCM) (reviewed previously 3,11 ).HCM is an autosomal-dominant disease characterized by left ventricular (LV) hypertrophy, which predominantly involves the interventricular septum and is associated with myocardial disarray and interstitial fibrosis. 12 HCM involves more than 450 mutations in at least 13 genes encoding sarcomeric proteins. 11,13 Out of them, mutations in MYBPC3 are frequent. 14 In contrast to other disease genes, in which the majority of the mutations are missense, Ϸ70% of MYBPC3 mutations result in a frameshift creating a premature termination...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.