The aspartic protease cathepsin D (cath-D) is a key mediator of induced-apoptosis and its proteolytic activity has been generally involved in this event. During apoptosis, cath-D is translocated to the cytosol. Because cath-D is one of the lysosomal enzymes that requires a more acidic pH to be proteolytically active relative to the cysteine lysosomal enzymes such as cath-B and -L, it is therefore open to question whether cytosolic cath-D might be able to cleave substrate(s) implicated in the apoptotic cascade. Here, we have investigated the role of wild-type cath-D and its proteolytically inactive counterpart overexpressed by 3Y1-Ad12 cancer cells during chemotherapeutic-induced cytotoxicity and apoptosis, as well as the relevance of cath-D catalytic function. We demonstrate that wild-type or mutated catalytically inactive cath-D strongly enhances chemo-sensitivity and apoptotic response to etoposide. Both wild-type and mutated inactive cath-D are translocated to the cytosol, increasing the release of cytochrome c, the activation of caspases-9 and -3 and the induction of a caspase-dependent apoptosis. In addition, pretreatment of cells with the aspartic protease inhibitor, pepstatin A, does not prevent apoptosis. Interestingly therefore, the stimulatory effect of cath-D on cell death is independent of its catalytic activity. Overall, our results imply that cytosolic cath-D stimulates apoptotic pathways by interacting with a member of the apoptotic machinery rather than by cleaving specific substrate(s).
The protein tyrosine phosphatase (PTP) PTPL1/PTPN13 is a candidate tumor suppressor gene. Indeed, PTPL1 activity has been reported recently to be decreased through somatic mutations, allelic loss, or promoter methylation in some tumors. We showed previously that its expression was necessary for inhibition of Akt activation and induction of apoptosis by antiestrogens in breast cancer cells. Implications of the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway in cancer progression are now well established, and our study was therefore designed to define whether PTPL1 is sufficient to inhibit this pathway and, if so, to identify a direct substrate of this PTP, which may trigger a proapoptotic effect. We first show by complementary approaches that PTPL1 specifically dephosphorylates insulin receptor substrate-1 (IRS-1) in vitro and in cellulo. Next, our experiments using a dominant-negative mutant and RNA interference confirm the crucial role of PTPL1 in IRS-1 dephosphorylation. Finally, we report that PTPL1 expression is sufficient to block the IRS-
The protein tyrosine phosphatase PTPL1/PTPN13, the activity of which is decreased through allelic loss, promoter methylation, or somatic mutations in some tumors, has been proposed as a tumor suppressor gene. Moreover, our recent clinical study identified PTPL1 expression level as an independent prognostic indicator of a favorable outcome for patients with breast cancer. However, how PTPL1 can affect tumor aggressiveness has not been characterized. Here, we first show that PTPL1 expression, assessed by immunohistochemistry, is decreased in breast cancer and metastasis specimens compared with nonmalignant tissues. Second, to evaluate whether PTPL1 plays a critical role in breast cancer progression, RNA interference experiments were performed in poorly tumorigenic MCF-7 breast cancer cells. PTPL1 inhibition drastically increased tumor growth in athymic mice and also enhanced several parameters associated with tumor progression, including cell proliferation on extracellular matrix components and cell invasion. Furthermore, the inhibition of Src kinase expression drastically blocked the effects of PTPL1 silencing on cell growth. In PTPL1 knockdown cells, the phosphorylation of Src on tyrosine 419 is increased, leading to the activation of its downstream substrates Fak and p130cas. Finally, substrate-trapping experiments revealed that Src tyrosine 419 is a direct target of the phosphatase. Thus, by identification of PTPL1 as the first phosphatase able to inhibit Src through direct dephosphorylation in intact cells, we presently describe a new mechanism by which PTPL1 inhibits breast tumor aggressiveness. Cancer Res; 70(12); 5116-26. ©2010 AACR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.