The last enzyme (LytB) of the methylerythritol phosphate pathway for isoprenoid biosynthesis catalyzes the reduction of (E)-4-hydroxy-3-methylbut-2-enyl diphosphate into isopentenyl diphosphate and dimethylallyl diphosphate. This enzyme possesses a dioxygen-sensitive [4Fe^4S] cluster. This prosthetic group was characterized in the Escherichia coli enzyme by UV/visible and electron paramagnetic resonance spectroscopy after reconstitution of the puri¢ed protein. Enzymatic activity required the presence of a reducing system such as £avodoxin/£avodoxin reductase/reduced nicotinamide adenine dinucleotide phosphate or the photoreduced deaza£avin radical.
In the methylerythritol phosphate pathway for isoprenoid biosynthesis, the GcpE/IspG enzyme catalyzes the conversion of 2-C-methyl-D D-erythritol 2,4-cyclodiphosphate into (E)-4-hydroxy-3-methylbut-2-enyl diphosphate. This reaction requires a double one-electron transfer involving a [4Fe-4S] cluster. A thylakoid preparation from spinach chloroplasts was capable in the presence of light to act as sole electron donor for the plant GcpE Arabidopsis thaliana in the absence of any pyridine nucleotide. This is in sharp contrast with the bacterial Escherichia coli GcpE, which requires flavodoxin/flavodoxin reductase and NADPH as reducing system and represents the first proof that the electron flow from photosynthesis can directly act in phototrophic organisms as reducer in the 2-C-methyl-D Derythritol 4-phosphate pathway, most probably via ferredoxin, in the absence of any reducing cofactor. In the dark, the plant GcpE catalysis requires in addition of ferredoxin NADP + /ferredoxin oxido-reductase and NADPH as electron shuttle.
The mevalonate-independent methylerythritol phosphate pathway is widespread in bacteria. It is also present in the chloroplasts of all phototrophic organisms. Whereas the first steps, are rather well known, GcpE and LytB, the enzymes catalyzing the last two steps have been much less investigated. 2-C-Methyl-D-erythritol 2,4-cyclodiphosphate is transformed by GcpE into 4-hydroxy-3-methylbut-2-enyl diphosphate, which is converted by LytB into isopentenyl diphosphate or dimethylallyl diphosphate. Only the bacterial GcpE and LytB enzymes have been investigated to some extent, but nothing is known about the corresponding plant enzymes. In this contribution, the prosthetic group of GcpE from the plant Arabidopsis thaliana and the bacterium Escherichia coli has been fully characterized by Mossbauer spectroscopy after reconstitution with (57)FeCl(3), Na(2)S and dithiothreitol. It corresponds to a [4Fe-4S] cluster, suggesting that both plant and bacterial enzymes catalyze the reduction of 2-C-methyl-D-erythritol 2,4-cyclodiphosphate into (E)-4-hydroxy-3-methylbut-2-enyl diphosphate via two consecutive one-electron transfers. In contrast to the bacterial enzyme, which utilizes NADPH/flavodoxin/flavodoxin reductase as a reducing shuttle system, the plant enzyme could not use this reduction system. Enzymatic activity was only detected in the presence of the 5-deazaflavin semiquinone radical.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.