Low-level laser therapy (LLLT) has been found to produce anti-inflammatory effects in a variety of disorders. Tendinopathies are directly related to unbalance in expression of pro- and anti-inflammatory cytokines which are responsible by degeneration process of tendinocytes. In the current study, we decided to investigate if LLLT could reduce mRNA expression for TNF-α, IL-1β, IL-6, TGF-β cytokines, and COX-2 enzyme. Forty-two male Wistar rats were divided randomly in seven groups, and tendinitis was induced with a collagenase intratendinea injection. The mRNA expression was evaluated by real-time PCR in 7th and 14th days after tendinitis. LLLT irradiation with wavelength of 780 nm required for 75 s with a dose of 7.7 J/cm(2) was administered in distinct moments: 12 h and 7 days post tendinitis. At the 12 h after tendinitis, the animals were irradiated once in intercalate days until the 7th or 14th day in and them the animals were killed, respectively. In other series, 7 days after tendinitis, the animals were irradiated once in intercalated days until the 14th day and then the animals were killed. LLLT in both acute and chronic phases decreased IL-6, COX-2, and TGF-β expression after tendinitis, respectively, when compared to tendinitis groups: IL-6, COX-2, and TGF-β. The LLLT not altered IL-1β expression in any time, but reduced the TNF-α expression; however, only at chronic phase. We conclude that LLLT administered with this protocol reduces one of features of tendinopathies that is mRNA expression for pro-inflammatory mediators.
The aim of this study was to evaluate the process of bone repair in rats submitted to low-level laser therapy using optical densitometry. A total of 45 rats which underwent femoral osteotomy were randomly distributed into three groups: control (group I) and laser-treated groups using wavelengths in the red (λ, 660-690 nm) and in the infrared (λ, 790-830 nm) spectra (group II and group III, respectively). The animals (five per group) were killed after 7, 14, and 21 days and the femurs were removed for optical densitometry analysis. Optical density showed a significant increase in the degree of mineralization (gray level) in both groups treated with the laser after 7 days. After 14 days, only the group treated with laser therapy in the infrared spectrum showed higher bone density. No differences were observed between groups after 21 days. Such results suggest the positive effect of low-level laser therapy in bone repair is time- and wavelength-dependent. In addition, our results have confirmed that optical densitometry technique can measure bone mineralization status.
Our results suggest that the anti-inflammatory therapy with low-power LED (880 nm) enhanced the tissue response in all groups. We can conclude that the LED was able to reduce signs of inflammation in collagenase-induced tendinitis in rats by reducing the number of inflammatory cells and decrease mRNA expression of cytokines.
The aim of the present study was to evaluate the feasibility of applying Raman spectroscopy in probing the molecular changes in terms of collagen deposition and tissue remodeling associated with two well-established experimental models of osteoarthritis (OA) in knee of rats. In order to evaluate alterations in the articular surface area, the menisci-covered tibial region was assessed into three groups as follows: control (joint preserved) and two models of experimental knee OA: collagenase-induced model (n = 8) and treadmill exercise-induced model (n = 8). Each group was examined for molecular changes using spectral parameters related to cartilage, subchondral bone, and bone tissues. A significant increase of Raman ratios related to mineralization and tissue remodeling was found (p < 0.05), suggesting that both models were successful for inducing OA in rats. The significantly lower phenylalanine content and higher crystallinity in the treadmill exercise-induced model of OA than collagenase-induced model of OA (p < 0.05) indicated that the OA pathogenesis was model-dependent. Thus, this work suggests that the Raman spectroscopy technique has potential for the diagnosis and detection of cartilage damage and monitoring of subchondral bone and bone in OA pathogenesis at the molecular level.
A variety of treatments for tendinopathies is currently used or has been trialed. However, in fact, there is a remarkably little evidence that any conventional therapies are effective. In the last years, low-level laser therapy (LLLT) has been showing interesting results in inflammatory modulation in different musculoskeletal disorders, but the optimal parameters and mechanisms behind these effects are not fully understood. The aim of this study is to investigate if the LLLT modulates the acute and chronic phase of collagenase-induced tendinitis in rat by interfering in mRNA expression for matrix metalloproteinases (MMP13 and MMP1), vascular endothelial growth factor (VEGF), and anti-inflammatory mediator (interleukin (IL)-10). For such, tendinitis was induced by collagenase injection in male Wistar rats. Animals were treated with LLLT (780 nm, potency of 22 mW, 107 mW/cm(2), energy density of 7.5 J/cm(2), and energy delivered of 1.54 J) with different number of treatments in accordance with the inflammatory phase analyzed. LLLT was able to modulate mRNA gene expression of IL-10, VGEF, MMP1, and MMP13 both in acute than in chronic inflammatory phase (p<0.05). Our results suggest that LLLT with parameters employed in the present study was able to modulate IL-10, VEGF, MMP1, and MMP13 mRNA gene expression both in acute than in chronic tendon inflammation. However, further studies are needed to establish optimal parameters for LLLT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.