Live-trapping capture-recapture studies of animal populations with fixed trap locations inevitably have a spatial component: animals close to traps are more likely to be caught than those far away. This is not addressed in conventional closed-population estimates of abundance and without the spatial component, rigorous estimates of density cannot be obtained. We propose new, flexible capture-recapture models that use the capture locations to estimate animal locations and spatially referenced capture probability. The models are likelihood-based and hence allow use of Akaike's information criterion or other likelihood-based methods of model selection. Density is an explicit parameter, and the evaluation of its dependence on spatial or temporal covariates is therefore straightforward. Additional (nonspatial) variation in capture probability may be modeled as in conventional capture-recapture. The method is tested by simulation, using a model in which capture probability depends only on location relative to traps. Point estimators are found to be unbiased and standard error estimators almost unbiased. The method is used to estimate the density of Red-eyed Vireos (Vireo olivaceus) from mist-netting data from the Patuxent Research Refuge, Maryland, U.S.A. Estimates agree well with those from an existing spatially explicit method based on inverse prediction. A variety of additional spatially explicit models are fitted; these include models with temporal stratification, behavioral response, and heterogeneous animal home ranges.
Unbiased estimation of population density is a major and unsolved problem in animal trapping studies. This paper describes a new and general method for estimating density from closed‐population capture–recapture data. Many estimators exist for the size (N) and mean capture probability ( p̄) of a closed population. These statistics suffer from an unknown bias due to edge effect that varies with trap layout and home range size. The mean distance between successive captures of an individual () provides information on the scale of individual movements, but is itself a function of trap spacing and grid size. Our aim is to define and estimate parameters that do not depend on the trap layout. In the new method, simulation and inverse prediction are used to estimate jointly the population density (D) and two parameters of individual capture probability, magnitude (g0) and spatial scale (σ), from the information in , p̄ and . The method uses any configuration of traps (e.g. grid, web or line) and any choice of closed‐population estimator. It is assumed that home ranges have a stationary distribution in two dimensions, and that capture events may be simulated as the outcome of competing Poisson processes in time. The method is applied to simulated and field data. The estimator appears unusually robust and free from bias.
The number of animals in a population is conventionally estimated by capture–recapture without modelling the spatial relationships between animals and detectors. Problems arise with non‐spatial estimators when individuals differ in their exposure to traps or the target population is poorly defined. Spatially explicit capture–recapture (SECR) methods devised recently to estimate population density largely avoid these problems. Some applications require estimates of population size rather than density, and population size in a defined area may be obtained as a derived parameter from SECR models. While this use of SECR has potential benefits over conventional capture–recapture, including reduced bias, it is unfamiliar to field biologists and no study has examined the precision and robustness of the estimates. We used simulation to compare the performance of SECR and conventional estimators of population size with respect to bias and confidence interval coverage for several spatial scenarios. Three possible estimators for the sampling variance of realised population size all performed well. The precision of SECR estimates was nearly the same as that of the null‐model conventional population estimator. SECR estimates of population size were nearly unbiased (relative bias 0–10%) in all scenarios, including surveys in randomly generated patchy landscapes. Confidence interval coverage was near the nominal level. We used SECR to estimate the population of a species of skink Oligosoma infrapunctatum from pitfall trapping. The estimated number in the area bounded by the outermost traps differed little between a homogeneous density model and models with a quadratic trend in density or a habitat effect on density, despite evidence that the latter models fitted better. Extrapolation of trend models to a larger plot may be misleading. To avoid extrapolation, a large region of interest should be sampled throughout, either with one continuous trapping grid or with clusters of traps dispersed widely according to a probability‐based and spatially representative sampling design.
Abstract. The density of a closed population of animals occupying stable home ranges may be estimated from detections of individuals on an array of detectors, using newly developed methods for spatially explicit capture-recapture. Likelihood-based methods provide estimates for data from multi-catch traps or from devices that record presence without restricting animal movement (''proximity'' detectors such as camera traps and hair snags). As originally proposed, these methods require multiple sampling intervals. We show that equally precise and unbiased estimates may be obtained from a single sampling interval, using only the spatial pattern of detections. This considerably extends the range of possible applications, and we illustrate the potential by estimating density from simulated detections of bird vocalizations on a microphone array. Acoustic detection can be defined as occurring when received signal strength exceeds a threshold. We suggest detection models for binary acoustic data, and for continuous data comprising measurements of all signals above the threshold. While binary data are often sufficient for density estimation, modeling signal strength improves precision when the microphone array is small.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.