TX 75083-3836, U.S.A., fax 01-972-952-9435. AbstractRecent advances in oil and gas cementing technology allow for the modeling and prediction of both compressive and tensile stresses upon an annular cement sheath, throughout the life of a well. Given the knowledge of the type and magnitude of stresses likely to be encountered in a specific location in a wells annulus gives designers target parameters for designing the mechanical properties necessary in the set cement to be able to sustain those stresses without failing. Such a mechanical failure in a cement sheath can cause a loss of annular isolation. However, the authors feel the ability to model these stresses is only one-half of the information necessary to design cement systems for long-term zonal isolation. While some good work has been done on certain lower density cement systems in an attempt to develop fit-forpurpose designs with improved tensile and flexural strengths, the authors have found that some wells requiring higher density cement systems, also need cements with "enhanced" mechanical properties. Towards this end, the authors have conducted mechanical properties research of several relatively common cement additives. These included organic materials as well as non-organic materials. For this study, these materials were added to oilfield cements with water contents averaging from 50 to 66 % by weight of cement (bwoc). Besides the more common unconfined compressive strength tests, the samples are also subjected to tensile and/or flexural strength testing. While the API has long ago established procedures for running unconfined compressive strength tests, there are currently no API standards in place covering the testing methodology for tensile and/or flexural strengths of oilfield cements. Accordingly, the authors present not only the mechanical properties achieved with the use of the various materials tested, but also the methodology used to achieve their data. In an effort to more closely scrutinize the effect each individual material has on the mechanical properties of the set cement, each additive is examined independently. Armed with this information, design engineers should be equipped to propose cement systems that produce effective long-term zonal isolation at the induced annular stresses of their own wells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.